1/2×5+1/5×8+1/8×11+...+1/92×95+1/95×98
A=1/2*5 + 1/5*8 + 1/8*11 + ... + 1/92*95 + 1/95*98
Ta có:\(A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{11}+...+\dfrac{31}{92}-\dfrac{32}{95}+\dfrac{32}{95}-\dfrac{33}{98}\)
\(=\dfrac{1}{2}+\dfrac{33}{98}=\dfrac{82}{98}=\dfrac{41}{49}\)
Ta có: \(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot98}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(=\dfrac{8}{49}\)
\(A=1/2*5+1/5*8+1/8*11+...+1/92*95+95*98\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
=> 3A = \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{98}\)
=> 3A = \(\frac{24}{49}\)
=> A = \(\frac{8}{49}\)
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)
Sửa 95.98 thành 1/(95.98) nhá
Ta có
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(3A=\frac{1}{2}-\frac{1}{98}\)
\(3A=\frac{49}{98}-\frac{1}{98}\)
\(3A=\frac{48}{98}=\frac{24}{49}\)
\(A=\frac{24}{49}\div3\)
\(A=\frac{8}{49}\)
Hok Tốt !!!!!!!!!!!!!!!!!!!!!!
A=1/2×5+1/5×8+1/8×11+.......+1/92×95+1/95×98
Giúp em với ạ
Tính: A = 1/2 x 5 + 1/5 x 8 + 1/8 x 11 +..... + 1/92 x 95 + 1/95 x 98
cả lời giải dùm nha
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{24}{49}\)
\(A=\frac{8}{49}\)
Vậy ...........
- tính
A = 1/2 x 5 + 1/5 x 8 + 1/8 x 11 +..... + 1/92 x 95 + 1/95 x 98
- ai biết giúp với ;_; tớ cảm ơn ;_;
A = 1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98
A = 1/3 . ( 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98 )
A = 1/3 . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98 )
A = 1/3 . ( 1/2 - 1/98 )
A = 1/3 . 24/49
A = 8/49
Tính:
\(\dfrac{1}{2\text{×}5}+\dfrac{1}{5\text{×}8}+\dfrac{1}{8\text{×}11}+...+\dfrac{1}{92\text{×}95}+\dfrac{1}{95\text{×}97}\)
đặt
\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+..+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot97}\)
\(3A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot97}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{97}\\ 3A=\dfrac{95}{194}\\ A=\dfrac{95}{582}\)
Tính A:
A=2/2×5+2/5×8+2/8×11+...+2/92×95+2/95×98
\(A=\frac{2}{2\cdot5}+\frac{2}{5\cdot8}+\frac{2}{8\cdot11}+...+\frac{2}{92\cdot95}+\frac{2}{95\cdot98}\)
\(A=\frac{2}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right]\)
\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right]\)
\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{98}\right]=\frac{2}{3}\left[\frac{49}{98}-\frac{1}{98}\right]=\frac{2}{3}\cdot\frac{48}{98}=\frac{2}{3}\cdot\frac{24}{49}=\frac{2}{1}\cdot\frac{8}{49}=\frac{16}{49}\)
\(A=\frac{2}{2.5}+\frac{2}{5.8}+...+\frac{2}{92.95}+\frac{2}{95.98}\)
\(=\frac{2}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=\frac{2}{3}.\frac{24}{49}\)
\(=\frac{16}{49}\)
#)Giải :
\(A=2-\frac{2}{5}+\frac{2}{5}-\frac{2}{8}+\frac{2}{8}-\frac{2}{11}+...+\frac{2}{95}-\frac{2}{98}\)
\(A=2-\frac{2}{98}\)
\(A=1\frac{48}{49}=\frac{97}{49}\)
#~Will~be~Pens~#
tính: 1/5 + 1/8 + 1/11 +... +1/92 + 1/95
Sẽ không tính được giá trị cụ thể bạn nhé. Bạn xem lại.
1/5 + 1/8 + 1/11 + 1/14 + ........ + 1/92 + 1/95 = ?