CM: \(\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+..........+\frac{2n+1}{n^2.\left(n+1\right)^2}\)<1
Chứng minh rằng
\(G=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+....+\frac{2n+1}{n^2.\left(n+1\right)^2}
\(G=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+....+\frac{2n+1}{n^2.\left(n+1\right)^2}=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{2n+1}{n^2\left(n^2+2n+1\right)}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{n^2}-\frac{1}{n^2+2n+1}\)
\(=1-\frac{1}{n^2+n+1}\left(n>0\right)\Rightarrow1-\frac{1}{n^2+n+1}
Chứng minh rằng:
\(a.A=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+...+\frac{2n+1}{n^2\left(n+1\right)^2}< 1\)
\(b.B=\frac{1}{2}\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{461}\)
Chứng minh rằng:
a)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\)<1
b)\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)<2
c)\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)<\(\frac{3}{4}\)
d)\(\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+...+\frac{1}{n^3}\)<\(\frac{1}{12}\)\(\left(n\in N;n\ge3\right)\)
e)\(\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)<1 (n nguyên dương)
g)\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2048}\)>3
h)\(\left(\frac{2}{1}\right)\left(\frac{4}{3}\right)\left(\frac{6}{5}\right)...\left(\frac{200}{199}\right)\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
1. Chứng minh : B = \(\left(1-\frac{2}{6}\right).\left(1-\frac{2}{12}\right).\left(1-\frac{2}{20}\right)...\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)
2. cho M = \(\frac{1}{1.\left(2n-1\right)}+\frac{1}{3.\left(2n-3\right)}+\frac{1}{5.\left(2n-5\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}\)
N = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-1}\)
Rút gọn \(\frac{M}{N}\)
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Chứng minh: \(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)\(< \frac{1}{2}\)
Thực hiện phép tính sau
a. F=[12(1)-2,3(6)]:4,(21)
b.\(\frac{1\frac{11}{34}.4\frac{3}{7}-\left(\frac{3}{2}-6\frac{1}{3}.\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}.\left(12-5\frac{1}{3}\right)}\)
c.1-\(\frac{\sqrt{121}}{\sqrt{196}}-\frac{\sqrt{169}}{\sqrt{144}}+\frac{\sqrt{25}}{\sqrt{36}}+\left(-1\frac{2}{3}\right):\left(-3\frac{1}{3}\right)\)
Minh AnNgọc HnueBăng Băng 2k6Thảo PHồ Đđề bài khó wáỖ CHÍ DŨNGBảo TrâmhLương Minh HằngươngAnh Qua
c/
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}:\frac{-10}{3}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}.\frac{-3}{10}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{1}{2}\)
\(=1-\left(\frac{66}{84}+\frac{98}{84}-\frac{70}{84}-\frac{42}{84}\right)\)
Mik làm tiếp nhé tại lúc nãy bấm nhầm!
Câu c/ (tiếp theo)
\(=1-\frac{52}{84}\)
\(=\frac{84}{84}-\frac{52}{84}=\frac{32}{84}=\frac{8}{21}\)
Câu a: Sai đề
Chứng minh rằng :
B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+...+\frac{36}{25.27.29}<3\)
C= \(\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{\left(2n\right)^2}<\frac{1}{4}\left(n\in N;n\ge2\right)\)
Giúp mik nhé
\(\begin{equation} x = a_0 + \cfrac{1}{740_1 + \cfrac{1}{897654_2 + \cfrac{1}{672_3 + \cfrac{1}{100_4} } } } \end{equation}\)
1) lim \(\frac{3n^2+5n+4}{2-n^2}\)
2) lim \(\frac{2n^3-4n^2+3n+7}{n^3-7n+5}\)
3) lim \(\left(\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1}\right)\)
4) lim \(\frac{1+3^n}{4+3^n}\)
5) lim \(\frac{4.3^n+7^{n+1}}{2.5^n+7^n}\)
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)