1) Cho so phuc z thoa man: /z+1-i/ = /z lien hop - 1 + 3i/ , biet /z/ min. Tim z
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
tim cac so m,n,p thoa man : m+n+p+8=2canm-1 + 4cann-2 +6canp-3
tim cac so x,y,z thoa man :canx+cany-1 +canz-2 = 1/2(x+y+z)
tim cac so x,y,z thoa man :x+y+z+4=2canx-2 +4cany-3+6canz-5
Tim 3 so nguyen to lien tiep x,y,z (x<y<z) thoa man A = x^2 + y^2 + z^2 la so nguyen to
biet x,y,z>0 thoa man căn xy +căn yz+ căn zx=1.tìm min A=x^2/(x+y) +y^2/(y+z)+z^2/(z+x)
áp dụng BĐT C-S dạng engel : A >/ x+y+z
áp dụng BĐT AM-GM x+y+z >/ căn xy + căn yz + căn zx
=>minA = 1
bạn ghi rõ ra dùm mình vs bạn Hoàng Phúc.mình chua học bdt này nên hơi khó hiểu tí
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim gia tri nho nhat cua bieu thuc M=1/16x+1/4y+1/z
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)
\(=\frac{49}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)
\(\Rightarrow1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\frac{1}{27}\ge xyz\)
Ta có \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 )
Xét \(3\sqrt[3]{\frac{1}{64xyz}}\)
Ta có \(\frac{1}{27}\ge xyz\)
\(\Rightarrow\frac{64}{27}\ge64xyz\)
\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)
\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)
Vậy \(M_{min}=\frac{9}{4}\)
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)
Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)
=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Cho 3 so x, y, z thoa man cac he thuc: \(\left(z-1\right)x-y=1\) va \(x+zy=2\)
Chmr: \(\left(2x-y\right)\left(z^2-z+1\right)=7\) va tim tat ca cac so nguyen x, y, z thoa man cac he thuc tren.
Cho x,y,z la cac so nguyen duong thoa man 1/x + 1/y + 1/z = 2015.
Tim GTLN cua bieu thuc P=x+y/x^2+y^2 + y+z/y^2+z^2 + z+x/z^2+x^2
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
c1: Tap hop cac gia tri nguyen cua x thoa man \(\left(x+\frac{5}{4}\right)\left(x-\frac{19}{7}\right)\)<0
c2: Neu x,y la cac so nguyen thoa man 2xy+4y=6 thi y co the nhan nhung gia tri nam trong tap hop nao
c3: tim 3 so x,y,z biet x+y=8,x+z=10,y+z=12
C4: Gia tri cua x thoa man (x+3)^2=25 va x^3>0 la x=
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7
C3: (x+y)+(x+z)+(y+z)=8+10+12
=> 2(x+y+z)=30
=> x+y+z=15
=> x=15-12=3
y=15-10=5
z=15-8=7
Cho số phức z thoa mãn (1+2i)z+(1+2\(\overline{z}\))i=1+3i tìm moodun cua z
Z= a+bi và \(\overline{Z}\) =a-bi → (1+2i).(a+bi) +(1+2a-2bi)i =1+3i
→a+bi +2ai -2b +i +2ai +2b=1+3i (i2= -1)
→ a+ (4a+b+1)i = 1+3i
→\(\begin{cases}a=1\\4a+b+1=3\end{cases}\) → a=1 , b=-2 → modum : \(\left|Z\right|\)=\(\sqrt{5}\)