Chứng tỏ5/1²+5/2²+5/3²+.....+5/99²+5/100²<1
Cho S=1/5^2+2/5^3+...+99/5^100.Chứng tỏ rằng S<1/16
Lời giải:
$S=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}$
$5S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{99}{5^{99}}$
$5S-S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}$
$4S+\frac{99}{5^{100}}=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}$
$5(4S+\frac{99}{5^{100}})=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}$
$5(4S+\frac{99}{5^{100}})-(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$
$4(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$
$16S=1-\frac{1}{5^{99}}-\frac{99.4}{5^{100}}<1$
$\Rightarrow S< \frac{1}{16}$
Bài 1 : Chứng minh rằng :
a) 4/3 + 4/3^2 + 4/3^3 + ..... + 4/3^99 < 2
b) B = 1/5 + 2/5^2 + 3/5^3 + ..... + 100/5^100 < 5/16
Cho \(S=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{99}{5^{100}}\). Chứng tỏ rằng S<\(\dfrac{1}{16}\)
Cho S=\(\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{99}{5^{100}}\) . Chứng tỏ rằng \(S< \dfrac{1}{16}\)
Cho: S=(1/5^2)-(2/5^3)+(3/5^4)-(4/5^5)+...+(99/5^100)-(100/5^101)
Chứng minh: S<1/36
minh chiu kho qua thong cam nha !!!!!!!!!!!!!! hi hi
a)Tìm số nguyên biết:
–5 (n + 5)
b)Tính nhanh:
1 – 2 + 3 – 4 + ... + 99 – 100
c)Chứng minh rằng:
5 + 52 + 53 + ...+ 599 + 5100 chia hết cho 6
Câu a mk ko hiểu gì nha xl bn nhìu
b)1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1) . 50
=(-50)
c) 5 + 52 + 53 + ...+ 599 + 5100
=(5+52)+(53+54)+....+(599+5100)
=30+52(5+52)+...+598(5+52)
=30.1+52.30+.....+598.30
=30(1+52+...+598) chia hết cho 6
Bài 1: chứng tỏ rằng tổng S= 5 + 5^2 + 5^3 +............+ 5^99 + 5^100 chia hết cho 6.
Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )
= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )
= 5.6 + 53.6 + .... + 599.6
= 6 ( 5 + 53 + ... + 599 )
Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6
Hay S chia hết cho 6 ( đpcm )
Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)
A=5.(1+5)+53.(1+5)+599.(1+5)
A=5.6+53.6+...+599.6
A=6.(5+53+...+599) sẽ chia hết cho 6
mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Chứng mình `S<1/5`.
`S=1/3 - 2/(3^2) + 3/(3^3) - 4/(3^4) + ... +99/(3^99) - 100/(3^100)`