cho đẳng thức x.(x+1).(x+2).....(x+2016)=2016 cm x< 1/2015!
cho đẳng thức x.(x+1).(x+2).....(x+2016)=2016 cm x< 1/2015!
cho đẳng thức: x.(x+1).(x+2).....(x+2016)=2016 chứng minh rằng x< 1/2015
Cho đẳng thức: x×(x+1)×(x+2)×(x+3)×...×(x+2016)=2016 (với x>0)
Chứng tỏ rằng x<1/2015
Cho đẳng thức
\(x.\left(x+1\right).\left(x+2\right).\left(x+3\right)...\left(x+2016\right)=2016.\)
Chứng tỏ rằng x < \(\frac{1}{2015!}\)
khó zay . mik ko làm dược k cho mik ik miik kb cho
Cho đẳng thức:x.(x+1).(x+2).(x+3).....(x+2016)=2016 (với x>0)
Chứng tỏ rằng:x<\(\frac{1}{2015}\)
\(A=\left(x+1\right).\left(x+2\right).\left(x+3\right)...\left(x+2016\right)=2016\)
\(A=x\left(1+2+3+...+2016\right)=2016\)
\(A=x\cdot\frac{\left(2016+1\right).2016}{2}=x\cdot2033136=2016\)
\(\Rightarrow x=2016:2033136=\frac{2}{2017}\)
\(\Rightarrow\frac{2}{2017}< \frac{1}{2015}\)
\(\Rightarrow x< \frac{1}{2015}\)
cho x,y thỏa mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0
Tính giá trị biểu thức M=(x+y)^2015+(x-2)^2016+(y+1)^2017
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có: 5x2+5y2+8xy-2x+2y+2=0
=> 4x2+8xy+4y2+x2-2x+1+y2+2y+1=0
=> (2x+2y)2+(x-1)2+(y+1)2=0
=> {2x+2y=0 => x=-y
{x-1 = 0 => x=1
{y+1 =0 => y=-1
=> x=1, y=-1
Thay vào biểu thức M, ta có:
M=(1+-1)2015+(1-2)2016+(-1+1)2017=0+1+0=1 (đpcm)
cho x,y thỏa mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0
Tính giá trị biểu thức M=(x+y)^2015+(x-2)^2016+(y+1)^2017
giúp mình đi nha mình cần rất rất rất rất ...... gấp đấy !!!!=.='
Cho đẳng thức: x.(x+1).(x+2).(x+3).....(x+2016)=2016 (vớix>0 )
Chứng tỏ rằng: x<\(\frac{1}{2015}\)
cho các số x,y thoả mãn đẳng thức 5x2+5y2+8xy-2x+2y+2=0
Tính giá trị của biểu thức M=(x+y)2015+(x-2)2016+(y+1)2017
Mọi người giúp nhóc em với ạ
\(5x2+5y2+8xy-2x+2y+2=0\)
(=) \((4x^2 + 8xy + 4y^2) + (x^2 - 2x +1) + (y^2 + 2y +1) = 0 \)
(=) \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)
Ta có \(\begin{cases} 4(x+y)^2 ≥ 0 \\ (x-1)^2 ≥ 0 \\ (y+1)^2 ≥ 0 \end{cases} \)
=> \(4(x+y)^2 + (x-1)^2 + (y+1)^2 ≥ 0 \)
Vậy để \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)
(=) \(\begin{cases} 4(x+y)^2 = 0 \\ (x-1)^2 = 0 \\ (y+1)^2 = 0 \end{cases} \)
(=) \(\begin{cases} x = -y \\ x = 1 \\ y = -1 \end{cases} \)
(=) \(\begin{cases} x = 1 \\ y = -1 \end{cases} \)
Vậy \(M=(x+y)^{2015}+(x-2)^{2016}+(y+1)^{2017} M=(1-1)^{2015} + (1-2)^{2016} + (-1+1)^{2017} M=0^{2015} + (-1)^{2016} +0^{2017} M= 1 \)Vậy M = 1