Cho một số tia chung gốc tạo thành một số góc. Sau khi vẽ thêm một tia chung gốc thì số góc tăng thêm là 9. Hỏi lúc đầu có bao nhiêu tia
Cho một số tia chung gốc tạo thành một số góc. Sau khi vẽ thêm một tia chung gốc thì số góc tăng thêm là 9. Hỏi lúc đầu có bao nhiêu tia ?
Bạn viết cả lời giải hô mình với !
Câu hỏi của Lê Đinh Doanh - Toán lớp 6 - Học toán với OnlineMath
Nếu vẽ thêm 1 tia chung gốc thì tia này ghép với mỗi tia bạn đầu tạo thành 1 góc.
Vì số góc tăng lên là 9 nên số tia ban đầu là 9 tia
Vậy số tia ban đầu là 9 tia
p/s : kham khảo
a) Ba đường thẳng cắt nhau tại O tạo thành bao nhiêu góc không kể góc bẹt?
b) Cho n tia chung gốc, chúng tạo thành 21 góc. Tính giá trị của n.
c) Cho một số tia chung gốc tạo thành một số góc. Sau khi vẽ thêm một tia chung gốc thì số góc tăng thêm là 9. Tính số tia lúc ban đầu.
a, - Tổng số góc không chứ góc bẹt là :
\(\dfrac{6\left(6-1\right)}{2}-3=12\) ( góc )
b, Ta có : \(\dfrac{n\left(n-1\right)}{2}=21\)
\(\Rightarrow n=7\) ( tia )
c, - Gọi số tia lúc ban đầu là n tia .
Theo bài ra ta có phương trình :\(\dfrac{\left(n+1\right)\left(\left(n+1\right)-1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n}{2}\left(\left(n+1\right)-\left(n-1\right)\right)=\dfrac{n}{2}.\left(n+1-n+1\right)=n=9\)
Vậy ...
a) Ba đường thẳng phân biệt cắt nhau tại O tạo thành 6 tia chung gốcSố góc tạo ra là: 6×(6−1)÷2=6×5÷2=15(góc)
Trong đó có 3 góc bẹt nên còn lại: 15−3=12(góc)
Vậy có 12 góc không kể góc bẹt được tạo thành
Bài 1: Cho 5 tia chung gốc O. Vẽ thêm 2 tia chung gốc O. Hỏi đã tăng thêm bao nhiêu góc đỉnh O
Bài 2: Cho trước một số tia chung gốc O. Sau khi vẽ thêm một tia đi qua gốc O thì tăng thêm 6 góc. Hỏi lúc đầu có bao nhiêu tia ?
Vẽ n tia chung gốc n thuộc N ,chúng tạo thành 28 góc.Hỏi giá trị của n bằng bao nhiêub. Cho 1 số tia chung gốc tạo thành 1 số góc. Sau khi vẽ thêm 1 tia chung thì số góc tăng lên 9. hỏi lúc đầu có bao nhiêu tia
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
Vẽ n tia chung gốc (n thuộc N*),chúng tạo thành 28 góc.Hỏi giá trị của n bằng bao nhiêu
b. Cho 1 số tia chung gốc tạo thành 1 số góc. Sau khi vẽ thêm 1 tia chung thì số góc tăng lên 9. hỏi lúc đầu có bao nhiêu tia
a) Có n tia chung gốc. \(\rightarrow\)Có: \(\frac{n\left(n+1\right)}{2}\)(góc)
Lại có: \(\frac{n\left(n+1\right)}{2}=28\)
\(\Rightarrow n\left(n+1\right)=56=7.8\)
\(\Rightarrow n=7\)
Vậy \(n=7\)
b) Gọi số tia chung gốc ban đầu là n tia. \(\rightarrow\)Sau khi vẽ thêm 1 tia, tổng số tia chung gốc là n+1 tia
Ta có: \(\frac{\left(n+1\right)\left(n+2\right)}{2}-\frac{n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2\right)-n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2-n\right)}{2}=9\)
\(\frac{2\left(n+1\right)}{2}=9\)
\(n+1=9\)
\(n=8\)
Vậy \(n=8\)
Cho trước một số tia chung gốc O, sau khi vẽ thêm một tia đi qua gốc O thì số góc tăng thêm là 6. Hỏi lúc đầu có mấy tia.
Mỗi tia ban đầu tạo với tia mới vẽ một góc mới. Số góc mới tăng thêm là 6, vậy ban đầu có 6 tia.
Cho 1 số tia chung gốc tạo thành 1 số góc,sau khi vẽ thêm 1 tia chung gốc đó thì số góc tăng thêm 9. Tính số góc ban đầu
Nếu vẽ thêm 1 tia chung gốc thì tia này ghép với mỗi tia bạn đầu tạo thành 1 góc.
Vì số góc tăng lên là 9 nên số tia ban đầu là 9 tia
Vậy số tia ban đầu là 9 tia
Cho 5 tia chung gốc , chúng tạo thành một số góc, . Nếu vẽ thêm 2 tia chung gốc O thì số góc tăng thêm bao nhiêu
cho trước một số tia chung gốc O. sau khi vẽ thêm một tia đi qua gốc O thì số góc tăng lên là 6.
hỏi lúc đầu có mấy tia