a, - Tổng số góc không chứ góc bẹt là :
\(\dfrac{6\left(6-1\right)}{2}-3=12\) ( góc )
b, Ta có : \(\dfrac{n\left(n-1\right)}{2}=21\)
\(\Rightarrow n=7\) ( tia )
c, - Gọi số tia lúc ban đầu là n tia .
Theo bài ra ta có phương trình :\(\dfrac{\left(n+1\right)\left(\left(n+1\right)-1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n}{2}\left(\left(n+1\right)-\left(n-1\right)\right)=\dfrac{n}{2}.\left(n+1-n+1\right)=n=9\)
Vậy ...
a) Ba đường thẳng phân biệt cắt nhau tại O tạo thành 6 tia chung gốcSố góc tạo ra là: 6×(6−1)÷2=6×5÷2=15(góc)
Trong đó có 3 góc bẹt nên còn lại: 15−3=12(góc)
Vậy có 12 góc không kể góc bẹt được tạo thành