Cho tam giác ABC vuông tại A. tia phân giác góc abc cắt AC tại D . Biết AB= 6cm, BC- 10cm tính CD
Cho tam giác abc có AB=6cm;AC=8cm;Bc=10cm. chứng tỏ tam giác ABC vuông tại A,Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
a) Ta có:
\(BC^2=AB^2+AC^2\)
\(10^2=6^2+8^2=36+64=100\)
Áp dụng định lí Pytago đảo
⇒ Tam giác ABC vuông tại A
b) 1/ Xét tam giác ABD và tam giác EBD có
^A=^E=90o(gt)
BD: cạnh chung
^B1=^B2(BD phân giác ^B)
⇒ Tam giác ABD= tam giác EBD
2/ Em xem lại đề ha
Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại D.
a) Cho biết BC=10cm, AB=6cm, AD=3cm. Tính AC, CD
b)Vẽ DE vuông góc với BC tại F. CM: tam giác ABD= tam giác EBD và tam giác BAE cân
c) Gọi F là giao điểm của AB và DE. So sánh DE và DF
d)Gọi H là giao điểm của BD và CF. K là điểm trên tia đối của tia DF sao cho DK = DF. I là điểm trên đoạn thẳng CD sao cho CI = 2DI. CM:K, H, I thẳng hàng
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho Tam giác ABC vuông tại A, biết AB=6cm, BC=10cm. a)Tính AC. b)Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DE_BC (E-BC). Gọi K là giao điểm của tia ED và đường thẳng AB. Chứng minh: Tam giácABD = Tam giácEBD. c)Chứng minh: Tam giác KDC cân. d) Kẻ AH_CK (H=CK) và tia BD cắt CK tại I. Chứng minh AH song song BI
Cho tam giác ABC vuông tại A. Trên tia đối tia AB lấy điểm D sao cho AD = AB .
a. Cho biết AB = 6cm và BC = 10cm. Tính AC và so sánh góc B và góc C.
b. Chứng minh tam giác BCD cân.
c. Gọi M là trung điểm CD. BM cắt CA tại G. Tính AG, BG.
a: AC=8cm
Xét ΔBAC có AB<AC
nên \(\widehat{B}>\widehat{C}\)
b: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCDB có
CA là đường trung tuyến
BM là đường trung tuyến
CA cắt BM tại G
Do đó: G là trọng tâm
=>AG=1/3AC=8/3(cm)
Cho tam giác ABC vuông tại A có AB = 6cm và BC = 10cm, tia phân giác của góc B cắt AC tại D . Kẻ AH vuông góc với BD Tại H, AH kéo dài cắt BC tại E . a/ tính AC? . b/ Chứng Minh tam giác ABE là tam giác cân . c/ chứng minh tam gaics BED là tam giác vuông, so sánh CD và AD ? . d/ gọi I là trung điểm BE.Chứng Minh AI+BH > 9cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
b) Xét ΔABH vuông tại H và ΔEBH vuông tại H có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABH=ΔEBH(Cạnh góc vuông-góc nhọn kề)
Suy ra: BA=BE(Hai cạnh tương ứng)
Xét ΔABE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Cho tam giác ABC vuông tại A. Biết AC = 6cm, BC = 10cm, tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Tính độ dài đoạn AB
b) Chứng minh: AD = DH
c) So sánh độ dài hai cạnh AD và DC
d) Chứng minh tam giác KBC là tam giác cân
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC