chứng tỏ rằng :2/1x3+2/3x5+2/5x7+...+2/99x101<1
MIK ĐANG CẦN ĐÁP ÁN GẤP
help me !!!
bài 15
a) 2/1x3 + 2/3x5 + 2/5.7+......+2/99x101
b) 5/1x3 + 5/3x5 + 5/5x7+......+5/99x101
bài 16
chứng tỏ rằng phân số 2n+1/3n+1 là phân số tối giản
bạn nào làm đc đầu tiên mk tick nha
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
= \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
= \(1-\dfrac{1}{101}\)
=\(\dfrac{100}{101}\)
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)
=\(\dfrac{5}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99+101}\right)\)
=\(\dfrac{5}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
=\(\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}-\dfrac{100}{101}\)
= \(\dfrac{305}{202}\)
Bài 16:
A = \(\dfrac{2n+1}{3n+1}\); đkxđ n \(\ne\) - \(\dfrac{1}{3}\)
Gọi ước chung lớn nhất của 2n + 1 là d
Ta có: 2n + 1 ⋮ d; 3n + 1 ⋮ d
2n + 1 ⋮ d ⇒ 3.(2n + 1) ⋮ d ⇒ 6n + 3 ⋮ d
3n + 1 ⋮ d ⇒ 2.( 3n+ 1) ⋮ d ⇒ 6n + 2 ⋮ d
⇒ 6n + 3 - (6n + 2) ⋮ d ⇒ 6n + 3 - 6n - 2⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Ước chung lớn nhất của 2n + 1 và 3n + 1 là 1
Hay 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau (đpcm)
2/1x3+2/3x5+2/5x7+....2/99x101
Ta có : \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Đặt : \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(A-\frac{2}{1\cdot3}=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(2A-\frac{2}{1\cdot3}=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-...+\frac{2}{99}-\frac{2}{101}\)
\(2A-\frac{2}{3}=\frac{2}{3}-\frac{2}{101}\)
\(2A-\frac{2}{3}=\frac{196}{303}\)
\(A-\frac{2}{3}=\frac{98}{303}\)
\(A=\frac{98}{303}+\frac{2}{3}=\frac{100}{101}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)
\(=\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+...+\frac{101-99}{99\times101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
2/1x3+2/3x5+2/5x7+...+2/99x101
A = 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101
A = 2/1 - 2/101 = 200/101
Kết quả là 200/101 bạn nhé
2/2 + 1x3 / 3x5 + 2/2 + ······ + 5x7 / 97x99 + 2 / 99x101
= 1-1 / 3 + 1 / 3-1 / 5 + 1 / 5-1 / 7 + ... ... + 1 / 97-1 / 99 + 1 / 99-1 / 101
= 1-1 / 101
= 100/101
2\1x3+2\3x5+2\5x7+...+2\99x101
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
= 2 .( 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101 )
= 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101 )
= 2 . ( 1 - 1/101 )
= 2 . ( 101/101 - 1/101 )
= 2 . 100/101
= 200/101
Chúc bn hok tốt !!!
tính nhanh các tổng sau
a, 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
Tính : B = 2/1x3 + 2/3x5 + 2/5x7 + 2/7x9 + ..... + 2/99x101
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
_Học tốt_
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{99\times101}\)
\(=\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+....+\frac{101-99}{99\times101}\)
\(=\frac{3}{1\times3}-\frac{1}{1\times3}+\frac{5}{3\times5}-\frac{3}{3\times5}+....+\frac{101}{99\times101}-\frac{99}{99\times101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(\dfrac{2}{1x3}\)+\(\dfrac{3}{3x5}\)+\(\dfrac{2}{5x7}\)+....+\(\dfrac{2}{99x101}\)
giúp mình với ạ
`2/(1xx3)+2/(3xx5)+2/(5xx7)+...+2/(99xx101)` đề phải ntn chứ mà nhỉ
`=1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101`
`=1/1-1/101`
`=101/101-1/101`
`=100/101`
(Sửa phần 3 / 3 x 5 = 2 / 3 x 5)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\)
Ta có: \(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\right)\)
\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\times\left(1-\dfrac{1}{101}\right)\)
\(=2\times\dfrac{100}{101}\)
\(=\dfrac{200}{101}\)
Sửa bài ( dòng 3 đến hết bài )
... = \(2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
A=2/1x3+2/3x5+2/5x7+....+2/99x101
Tính bằng cách thuận tiện.
\(A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}\)
1x3+3x5+5x7+...+99x101