Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thanh Trà
Xem chi tiết
Ngô Minh Đức
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
VRCT_Ran Love Shinichi
Xem chi tiết
vũ tiền châu
11 tháng 1 2018 lúc 19:30

ta có \(x\sqrt{a+y}+y\sqrt{a+x}=\sqrt{x}\sqrt{ax+xy}+\sqrt{y}\sqrt{ay+xy}\)

<=\(\sqrt{\left(x+y\right)\left(ax+xy+ay+xy\right)}=\sqrt{b\left[a\left(x+y\right)+2xy\right]}=\sqrt{b.a.b+b2xy}\)

Mà \(2xy\le\frac{\left(x+y\right)^2}{2}=\frac{b}{2}\Rightarrow b.2xy\le\frac{b^2}{2}\)

=>...\(\le\sqrt{b^2a+\frac{b^2}{2}}=b\sqrt{a+\frac{1}{2}}\)

Dâu = xảy ra <=> x=y=b/2

^_^

Uchiha Sasuke
17 tháng 1 2018 lúc 20:53

chúc bạn học tốtKết quả hình ảnh cho ảnh naruto

Trần Dương An
Xem chi tiết
Thầy Tùng Dương
17 tháng 9 2018 lúc 16:37

Không mất tính tổng quát, giả sử x > y (do tổng x + y = 2009 là một số lẻ)\(\Rightarrow\)\(\ge\)y+1 \(\Rightarrow\)x - y - 1 \(\ge\)0.

Từ đó, ta có: (x +1)(y -1) = xy - (x - y -1) \(\le\)xy.

Đến đây ta hiểu rằng, khi x và y càng xa nhau thì tích xy càng bé.

như vậy, GTLN của xy = 1005.1004; GTNN của xy = 2008.1

hanaminhphuong hansmi da...
18 tháng 9 2018 lúc 22:03
Chào bạn
vuong hien duc
Xem chi tiết
Nguyễn Phương Uyên
Xem chi tiết
Lê Song Phương
30 tháng 4 2023 lúc 22:32

 Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)

 Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\)

 Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\).  Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)

Akai Haruma
30 tháng 4 2023 lúc 22:34

Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$

$=\frac{a^2}{a+1}$ với $x+y=a$

Áp dụng BĐT AM-GM:

$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$

$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$

$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$

$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$

Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$

Hắc Thiên
Xem chi tiết
ღ๖ۣۜLinh
20 tháng 10 2019 lúc 23:20

F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy

=(x+y)3-xy(3x+3y-2)

=20073-xy[3.2007-2]

làm tiếp đi 

chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)

Khách vãng lai đã xóa
alibaba nguyễn
21 tháng 10 2019 lúc 11:10

Đầu tiên tìm GTLN, GTNN của xy.

Không mất tính tổng quát giả sử:

\(x\ge y+1\)

\(\Leftrightarrow x-y-1\ge0\)

\(\Leftrightarrow x-y-1+xy\ge xy\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)

Từ đây ta suy được:

\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)

Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)

Ta lại có:

\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)

Thế vô là xong

Khách vãng lai đã xóa
oooloo
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 19:10

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24