CMR 2^2^2n + 5 chia hết cho 7
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
cmr:
a) 22225555 + 55552222 chia hết cho 7
b) 42n -32n -7 chia hết cho 168 với n>= 1
c) (22 )2n + 5 chia hết cho 7 với n>1
cmr: 2^2^2n+5 chia hết cho 7 với n > 0
CMR
a) \(6^{2n}+3^{n+2}+3^n\)chia hết cho 11
b)\(5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}\)chia hết cho 19
c)\(4^{2n}-3^{2n}-7\)chia hết cho 168
d)\(3^{2^{2n+1}}+2^{3^{4n+1}}+5\)chia hết cho 22
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
CMR:
3^n+3 + 2^n+3 + 3^n+1 + 2^n+2 chia hết cho 6
7^n+4-7^n chia hết cho 30
6^2n + 3^n+2+3^n chia hết cho 11
25^7 + 5^13 chia hết cho 30
3n+2-2n+2+3n-2n
= ( 3n+2+3n)-(2n+2+2n)
= 3n(32+1)-2n(22+1)
= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10
b) 7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
c) 62n+3n+2+3n=22n.3n+3n(32+1)
=22n.32n+3n.11 chia het cho 11
đ) câu hỏi tương tự nhé
l-i-k-e mình nhé
1)CMR
B= 3+3 ^ 3 + 3^5 +...+ 3^1991 chia hết cho 13
C= 3+ 3^3 + 3^5 +3^7 +... + 3^2n-1 chia hết cho 30
2)Cmr
1.4.+2.4^2 + 2. 4^3+4.4^4+5.4^5+6.4^6 chia hết cho 3
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
CMR 3n+3+3n+1+2n+3+2n+2 chia hết cho 7
Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.