Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Hoàn
Xem chi tiết
Nguyễn Minh Quang
14 tháng 1 2022 lúc 21:13

ta chứng minh \(A=n^2\)

thật vậy

với n=1 , thì \(A=1=1^2\) đúng

ta giả sử đẳng thức đúng tới k ,tức là : 

\(1+3+5+..+2k-1=k^2\)

Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)

vậy đẳng thức đúng với k+1

theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương

Khách vãng lai đã xóa
Nguyễn Thùy Linh
Xem chi tiết
Tai
27 tháng 7 2023 lúc 14:14

 

 Ta có: A = 5 + 52 + 5+....+ 5100

      ⇒�=(5+52)+(53+54)+...+(599+5100)

       ⇒�=5(1+5)+53.(1+5)+...+599.(1+5)

       ⇒�=5.6+53.6+...+599.6

              �=6.(5+53+...+599) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

Escper Diabolic
Xem chi tiết
hong pham
22 tháng 7 2015 lúc 21:45

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

Trương Hữu Thắng
17 tháng 12 2016 lúc 20:51

còn câu b

pham van chuong
22 tháng 12 2016 lúc 21:18

a,

Vi A>5 ma A chia het cho 5

=>A co nhieu hon 2 uo

vay A la hop so 

bta thay 5^2chia het cho 25 , 5^3 chia hetcho 25 ,5^100 chia het cho 25 

nhung5 khong chia het cho 25 

=>A khong chia het cho 25 

=> A khong phai la so chinh phuong.

Trang Hồ
Xem chi tiết
loidonhoadon
Xem chi tiết
Nguyễn Văn Anh
Xem chi tiết
Phạm Bùi Tuấn Phát
Xem chi tiết

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 5198)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

Võ Hoàng Anh
Xem chi tiết
Trịnh Hương Quỳnh
26 tháng 11 2015 lúc 17:16

3.

x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}

ƯC(100;500) =100

suy ra x =100

BC(10;25) =50

suy ra x =50

tick nha

Hoa Phùng Mai
Xem chi tiết