Giai cac bpt sau va bieu dien tap nghiem tren truc so
a)x2\(\ge\)0
b)x2\(\le\)0
c) x2-2x+3 \(\ge\)0
Giup em voi a
Giai cac bat phuong trinh sau va bieu dien tap nghiem cua bat phuong trinh tren truc so:
a. 2(3x-1)-2x<2x-1
b. 4x-8≥3(3x-2)+4-2x
c. 3(x-2)(x+2)<3x²+x
d. (x+4)(5x-1)>5x²+16x+2
a: =>6x-2-2x<2x-1
=>4x-2<2x-1
=>2x-1<0
=>x<1/2
b: =>4x-8>=9x-6+4-2x
=>4x-8>=7x-2
=>-3x>=6
=>x<=-2
c: =>3x^2-12<3x^2+x
=>x>-12
d: =>5x^2-x+20x-4>5x^2+16x+2
=>19x-4>16x+2
=>3x>6
=>x>2
bieu dien cac so -20/16 va 15/10 tren truc so. diem bieu dien nao cach xa goc O hon
giup mk vs ai nhanh va dung minh k cho nho la phai ve truc so roi bieu dien nhe
cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
cho mình hỏi
bpt mx2 \(\ge\) -1 , với m<0 lúc chia 2 vế thành
x2\(\le\) \(\dfrac{-1}{m}\)
hay
x2\(\le\)\(\dfrac{1}{m}\)
a)\(mx^2\ge-1\Leftrightarrow x^2\ge-\dfrac{1}{m}\)
mà m < 0 \(\Rightarrow-\dfrac{1}{m}=\dfrac{1}{m}\)
\(=>x^2\ge\dfrac{1}{m}\Leftrightarrow x^2\le-\dfrac{1}{m}\)
`mx^2 >= -1`
`<=>[mx^2]/m <= [-1]/m`
`<=>x^2 <= [-1]/m` (Vì `m < 0`)
Khi chia `2` vế bất ptr cho `1` số âm cụ thể ở bài này là `m < 0` thì bất ptr phải đổi chiều.
chứng minh rằng
a)A=x2+4xy+5y2+2x-10y+14>0
b)B=5x2+10y2-(xy-4x-2y+3)>0
c)C=(x2+2x+3)(x2+2x+4)+3>0
Khoanh tròn vào đáp án đúng
1 PT nào sau đây là PT bậc hai một ẩn :
A. x2 + 3x = 0
B. 3x + 3 = 0
C. X4 + 2x + 7 = 0
D. 1/x2 + x + 4 = 0
2. PT nào sau đây có nghiệm kép :
A. -x2 - 4x + 4 = 0
B. x2 - 4x - 4 = 0
C. x2 - 4x + 4 = 0
D. Cả 3 đáp án trên đều đúng
goi p l tap hop cac so tu nhien le ,lon hon 3 nhung ko lon hon 9.
a) mo ta tap hop p bang 2 cach ,
b) bieu dien cac phan tu cua tap hop p tren cung mot tia so.
f(x)=-2x+6
f(x)=x2 -6x+5
f(x)=(x+3)(4-x)
f(x)=-x2 +4/x2-2x+1
bài 2 giải bpt sau
a (x-2)(x2+2x-3)>/=0
b x2-9/-x+5<0
giúp mình với ạ
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
Gi ải các phương trình sau (Đặt ẩn phụ)
a)( x2+x)2+4(x2+x)-12=0
b) (x2+2x+3)-9(x2+2x+3)+18=0
c) (x-2)(x+2)(x2-10)=72
a: Đặt \(a=x^2+x\)
Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)
=>\(a^2+6a-2a-12=0\)
=>a(a+6)-2(a+6)=0
=>(a+6)(a-2)=0
=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))
=>\(\left(x+2\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
b:
Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)
Đặt \(b=x^2+2x+3\)
Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)
=>\(b^2-3b-6b+18=0\)
=>b(b-3)-6(b-3)=0
=>(b-3)(b-6)=0
=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)
=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)
=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)
c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)
=>\(x^4-14x^2+40-72=0\)
=>\(x^4-14x^2-32=0\)
=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)
=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)
=>x2=16
=>x=4 hoặc x=-4