Cho tam giác ABC vuông tại A, AB = 4cm góc abc = 60 độ
a) tính AM, AC
b)BD là tia phân giác của góc ABC (D thuộc A). CM rằng DM vuông góc AC
c) So sánh AD và DC
mọi người có thể giúp mình được không . Mình đang cần gấp
cho tam giác ABC vuông tại A ,AB =4cm, góc ABC =60 độ
a) tinh AM, AC
b) BD là tia phân giác của góc ABC . chứng minh DM vuông góc AC
c) so sánh AD và DC
tam giác ABC vuông tại A với BC = 4cm , góc ABC = 60 độ. đường trung tuyến AM(M thuộc BC)
a)Tính AM,AC
b)BD là tia phân giác của ABC chứng minh DM vuông góc AC
c) so sánh AD và DC
nhanh giup minh
minh dang gap
cho tam giác ABC vuông tại A . AB = 4cm góc ABC = 60 độ AM là tia phân giác của góc BAC
a) tinh AM < AC
b)BD là tia phân giác của góc ABC chứng minh DM vuông góc AC
c)so sánh AD và DC
minh dang gap
nhanh giup minh nhe
Cho tam giác ABC vuông tại C,có góc A = 60 độ tia phân giác góc A cắt BC tại E.Kẻ EK vuông góc AB,BD vuông góc AE
a,CM: AK = AC
b,CM: AD = BD
c, BD cắt AC tại I.CM:IE là phân giác của góc BIA
d,CM:BD,EK,AC đồng quy
Làm ơn giải giúp mình nha,mình cần gấp !!
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK
c: Xét ΔAIB có
AD vừa là đường cao, vừa là phân giác
=>ΔAIB cân tại A
=>IE là phân giác của góc BIA
cho tam giác ABC có góc A = 60 độ AB<AC, đường cao BH ( H thuộc AC)
a) So sánh ABC và ACB Tính góc ABH
b Vẽ ad là phân giác của góc A ( D thuộc Bc, vẽ BI vuông góc với AD tại I. Cm tam giác AIB= tam giác BHA
c Tia BI cắt AC ở E, CM tam giác ABE đều
d. CM DC>DB
a) Trong tam giác ABC có AB<AC
=>góc ACB< góc ABC
Có tam giác ABH vuông tại H
=>HAB+ABH=90 độ )
=>60 độ+ABH=90 độ
ABH=30 độ
b) AD là tia phân giác của góc A
=>EAI= IAB=60độ:2= 30 độ
Xét tam giác vuông BHA và tam giác vuông AIB có
Cạnh huyền AB chung
ABH=IAB=30 độ
=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)
c) Xét tam giác vuông AIE và tam giác vuông AIB có
Cạnh AI chung
EAI=IAB=30 độ
=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)
=>AE=AB ( 2 cạnh tương ứng)
=> Tam giác ABE là tam giác cân và có EAB=60 độ
=> Tam giác ABE là tam giác đều
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có
AB=AE
EAD=DAB=30 độ
Cạnh AD chung
=> tam giác ADB= tam giác ADC (c.g.c)
=> DB=DE (1) và góc ABD=góc AED
do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)
CBx>góc C ( CBx là góc ngoài của tam giác ABC)
=> CED>C, do đó DC>DE (2)
Từ (1) và (2) =>DC>DB
Cho tam giác ABC có góc A =60 độ, AB<AC , đường cao BH( H thuộc AC)
A, so sánh ABC và ACB . Tính góc ANH
B, vẽ AD là phân giác của góc A( D thuộc BC) , vẽ BI vuông góc AD tại I. Cm tam giác ADB = tam giác CHA
C, tia BI cắt AC ở E , cm tam giác ABE đều
D, cm DC> DB
cho tam giác abc có góc a =60 độ , AB<AC , đường cao BH (H thuộc AC)
a, So sánh ABC và ACB . Tính góc ABH
b, Vẽ tia phân giác của góc A (d thuộc BC) , vẽ BD vuông góc AI tại D Cm tam giác AIB =tam giác BHA
c,tia BI cắt AC ở E . CM tam giác ABE đều
Cm DC>DB
Cho tam giác ABC vuông tại A, có góc ABC = 60*. Trên tia BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại E, cắt tia BA tại F.
a) Tính số đo góc ACB và so sánh độ dài các cạnh của tam giác ABC.
b) Chứng minh: BE là đường trung trực của đoạn thẳng AD và BE là tia phân giác của góc ABC.
c) Chúng minh: AD // FC.
d) Chứng minh: AC = 3DE.
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
- cho tam giác ABC vuông tại A có AB= 10 cm,, góc ACB= 40 độ
a/ tính độ dài BC??
b/ kẻ tia phân giác BD của góc ABC (D thuộc AC) . tính AD
a)Ta có: SinC = \(\frac{AB}{BC}\)=> Sin40 = \(\frac{10}{BC}\)=> BC = 15.5 (cm)
b) Có B = 90 độ - 40 độ = 60 độ
=> Góc ABD = 60/2 = 30 độ
Ta có TanABD = \(\frac{AD}{BA}\)=> Tan30 = \(\frac{AD}{10}\)=> AD = \(\frac{\sqrt{3}\cdot10}{3}\)