cho hai số tự nhien a, b và (a-b) chia hết cho 11
CMR: (7a + 4b) chia hết cho 11
chứng minh rằng nếu a và b là các số tự nhiên sao cho 7a+4b và 5a+3b cùng chia hết cho 2015 thì a và b cùng chia hết cho 2015
Cho a và b là các số tự nhiên.Chứng minh rằng:
a)Nếu a+b chia hết cho 7 thì a+8b cũng chia hết cho 7
b)Nếu a-4b chia hết cho 11 thì 12a+7b cũng chia hết cho 11
Cho a và b là các số nguyên.Chứng minh rằng
a) Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
b) Nếu 3a+4b chia hết cho 11 thì a+5b chia hêt cho 11
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
Cho a, b thuộc Z. CMR:
a) Nếu 2a+ b chia hết cho 13 và 5a -4b chia hết cho 13. CMR a-6b chia hết cho 13.
b) Nếu a0b chia hết cho 7 thì a+4b chia hết cho 7.
c) Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11.
Các bạn giúp mk vs!!!
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
DK: a,b thuoc N, a > 0
\(\overline{a0b}=100a+b⋮7\)
\(\Rightarrow4.\left(100a+b\right)⋮7\)
\(\Rightarrow400a+4b⋮7\)
\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)
\(\)
Ta co: \(3a+4b⋮11\Rightarrow7.\left(3a+4b\right)⋮11\)
\(\Rightarrow21a+28b⋮11\)
\(\text{ma }21a+28b+a+5b=22a+33b⋮11\)
\(\Rightarrow a+5b⋮11\text{ vi }21a+28b⋮11\)
Cho a và b là 2 số nguyên.Chứng minh rằng:
a.Nếu 2a+b chia hết cho 13 và 5a-4b chia hết cho 13 thì a-6b chia hết cho 13
b.Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
c.Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11
ho a và b là 2 số nguyên.Chứng minh rằng:
a.Nếu 2a+b chia hết cho 13 và 5a-4b chia hết cho 13 thì a-6b chia hết cho 13
b.Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
c.Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11
a, Ta có: \(2a+b⋮13\Rightarrow2.\left(2a+b\right)⋮13\Rightarrow4a+2b⋮13\)
Mà \(5a-4b⋮13\) \(\Rightarrow\left(5a-4b\right)-\left(4a+2b\right)⋮13\Rightarrow5a-4b-4a-2b⋮13\)
\(\Rightarrow a-6b⋮13\) (đpcm)
Vậy...
b, Ta có: \(98⋮7\Rightarrow98a⋮7\). Mà \(100a+b⋮7\Rightarrow\left(100a+b\right)-98a⋮7\Rightarrow100a+b-98a⋮7\)
\(\Rightarrow2a+b⋮7\Rightarrow4.\left(2a+b\right)⋮7\Rightarrow8a+4b⋮7\)
Mặt khác \(7a⋮7\Rightarrow8a+4b-7a⋮7\Rightarrow a+4b⋮7\) (đpcm)
Vậy...
b, Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
Mà \(11\left(a+b\right)⋮11\Rightarrow11a+11b⋮11\)
\(\Rightarrow\left(12a+16b\right)-\left(11a+11b\right)⋮11\Rightarrow12a+16b-11a-11b⋮11\)
\(\Rightarrow a+5b⋮11\) (đpcm)
Vậy...
bạn ơi bạn làm ngược lại câu b cho mình đc không mình cần gấp
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
Bài 1:Ta ký hiệu: (a,b) là ước chung lớn nhất của a và b; [a,b] là bội chung nhỏ nhất của a và b
Hãy tìm hai số tự nhiên a và b sao cho: a+2b=48 và (a,b)+3[a, b]=114
Bài 2: x thuộc N, 24 chia hết cho x; 36 chia hết cho x; 160 chia hết cho x và x lớn nhất
Bài 3: tìm phân số a,b thỏa mãn điều kiện: 4/7<a/b<2/3 và 7a+4b= 1994
1. Cho biết a + 4b chia hết cho 13 ( a,b thuộc N )
CMR 10a + b chia hết cho 13.
2. Tìm STN n sao cho 18n + 3 chia hết cho 7
3. a) Tìm STN có hai chữ số, biết rằng nếu lấy số đó cộng với số gồm hai chữ của số đó viết theo thứ tự ngược lại thì tổng chia hết cho 11.
b) ....................... chia hết cho 15.
Bài 1 : Cho 9a + 4b + 5 c chia hết cho 11 . CMR : 9a + b + 4c chia hết cho 11
Bài 2 : Tìm số A = abc biết A chia hết 7 và a + b + c chia hết cho 7
PLe hãy giải cho e