Tính
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
Ta có
\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)
\(=2-\frac{1}{10}\)
\(=\frac{19}{10}\)
Vậy \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)\(=\frac{19}{10}\)
\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)
\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)
\(=-\frac{9}{10}+\frac{1}{90}\)
= ...
bn tự tính nha!
Tính theo cách hợp lí:
M = \(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(M=\frac{1}{9.10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Chứng minh rằng:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Đây là tính chứ chứng minh cái gì ?
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Lập luận: 1/1.2 = 1/1 - 1/2 ; 1/2.3 = 1/2 - 1/3 ; 1/3.4 = 1/3 - 1/4 ; làm tương tự với các số kia.
Ta có: 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10
= 1 - 1/10
= 9/10
Tính giá trị biểu thức:
\(A=\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-7-...-49}{89}\)
\(B=\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+\frac{41}{4.5}+...+\frac{181}{9.10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{4}{10}\)
\(=\frac{2}{5}\)
ai k tôi k lại
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
1/2.3 + 1/3.4 + 1/4.5 + ... + 1/9.10
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
= 1/2 - 1/10
= 5/10 - 1/10
= 4/10 = 2/5
Tính nhanh:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{10}\right)\)
\(A=1-\frac{1}{10}\)
\(A=\frac{9}{10}\)
dế mà em, giải thế này nè
A=1-1/2 +1/2-1/3 +1/3-1/4 +......+1/9-1/10
A=1-1/10+9/10
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{1}-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
Tính\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6
1/1 - 1/2+1/2 -1/3+1/3 - 1/4+1/4 - 1/5+1/5 - 1/6
=1-( -1/2+1/2+-1/3+1/3+-1/4+1/4+-1/5+1/5)-1/6
=1 - 1/6
=6/6 - 1/6
=5/6
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-.....-\frac{1}{9.10}\)
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-......-\frac{1}{9.10}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{10}=\frac{1}{10}\)
Kết quả là \(\frac{9}{10}\)
Đúng 100% k mình nha