2x+2x+1+2x+2=56
m) 2x+ 2x+1+ 2x+2 = 56
\(2^x+2^{x+1}+2^{x+2}=56\)
\(2^x\left(1+2+2^2\right)=56\)
\(2^x\cdot7=56\)
\(2^x=8\)
\(x=3\)
a)2x+2x+1+2x+2=56
b)3x+3x+2+3x+3=111
a) Ta có 2x + 2x + 1 + 2x + 2 = 56
⇒ 2x ( 1 + 21 + 22 ) = 56
⇒ 2x . 7 = 56
⇒ 2x = 56 : 7 = 8 = 23
Vậy x = 3
b) Ta có 3x + 3x + 2 + 3x + 3 = 111
⇒ 3x ( 1 + 32 + 33 ) = 111
⇒ 3x . 37 = 111
⇒ 3x = 111 : 37 = 3 = 31
Vậy x = 1
1.tìm x:
a.7x^2-16x=2x^3-56
b.x^7+x^3+2x^5+2x=0
c.(2x+1)x-5(x+1/2)=0
a) \(7x^2-16x=2x^3-56\)
\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)
\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(2x-7=0\)
\(\Leftrightarrow\)\(x=3,5\)
Vậy...
b) \(x^7+x^3+2x^5+2x=0\)
\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)
\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy...
c) \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)
Vậy...
1.tìm x:
a.7x^2-16x=2x^3-56
b.x^7+x^3+2x^5+2x=0
c.(2x+1)x-5(x+1/2)=0
a: \(\Leftrightarrow2x^3-56-7x^2+16x=0\)
\(\Leftrightarrow2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
=>2x-7=0
hay x=7/2
b: \(\Leftrightarrow x^5\left(x^2+2\right)+x\left(x^2+2\right)=0\)
=>x(x2+2)(x4+1)=0
=>x=0
c: \(\Leftrightarrow2x^2+x-5x-\dfrac{5}{2}=0\)
\(\Leftrightarrow2x^2-4x-\dfrac{5}{2}=0\)
hay \(x\in\left\{\dfrac{5}{2};-\dfrac{1}{2}\right\}\)
Giải phương trình sau
\(\frac{2x-1}{4x^2+2x+1}\) \(-\frac{2}{2x-1}=\frac{8x+2}{1-8x^3}\)
\(\frac{2x+9}{x^2+9x+8}-\frac{2x+15}{x^2+15x+56}+\frac{2x+10}{x^2+10x+21}=\frac{4}{3}\)
Tìm x,y,z
1, x:y:z=5:7:10 và 2x+y-z=-21
2, X:y:z=3:4:6 và 4y-2x+3z=-56
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$
Tìm x ∈ N , biết.
a) 3 x + 1 : 3 4 = 81
b) 3 x + 3 . 3 x + 1 = 729
c) 2 x + 3 . 2 x = 128
d) 23 + 3 x = 5 6 : 5 3
e) 2 x + 2 x + 4 = 272
Tìm x ∈ N, biết.
a, 3 x + 1 : 3 4 = 81
b, 3 x + 3 . 3 x + 1 = 729
c, 2 x + 3 . 2 x = 128
d, 23 + 3 x = 5 6 : 5 3
e, 2 x + 2 x + 4 = 272
a, 3 x + 1 : 3 4 = 81
3 x - 3 = 3 4
x – 3 = 4
x = 7
Vậy x = 7
b, 3 x + 3 . 3 x + 1 = 729
3 2 x + 4 = 3 6
2x + 4 = 6
x = 1
Vậy x = 1
c, 2 x + 3 . 2 x = 128
2 2 x + 3 = 2 7
2x + 3 = 7
x = 2
Vậy x = 2
d, 23 + 3 x = 5 6 : 5 3
23 + 3 x = 5 3
23 + 3x = 125
3x = 102
x = 34
Vậy x = 34
e, 2 x + 2 x + 4 = 272
2 x + 2 x . 2 4 = 272
2 x ( 1 + 2 4 ) = 272
2 x . 17 = 272
2 x = 16
2 x = 2 4
x = 4
Vậy x = 4
tìm x
1, (-12)^2 . x = 56+10.13 .x
2, (2x + 1)^3 =-27
3, (2x+1)^2 =9
4, (x-3) (x^2+1) =0