Tìm các số x,y nguyên dương để 1/x+1/y+1/x.y=2/3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm các số nguyên x,y sao cho
a)(x+1)(y-2)=-5
b)x.y=-3
c)x.y=-3 và x<y
d)(x-1)(y+1)=-3
b) Ta có: xy=-3
nên x,y là các ước của -3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(1;-3\right);\left(-1;3\right);\left(-3;1\right);\left(3;-1\right)\right\}\)
tìm các số nguyên x,y sau
a)x.y=-2
b)x.y=-3 và x<y
c)(x+1)(y-3)=-5
d)x.y=-11
e)x.y=-3 và x<y
f)(x-2)(y+5)=-3
a: \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-1;2\right);\left(-2;1\right);\left(2;-1\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(-3;1\right);\left(-1;3\right)\right\}\)
d: \(\left(x,y\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
Câu 1: Tìm các số nguyên x,y sao cho :
a/ x.y = -5
b/ x.y= -5 và x > y
c/ (x+1)(y-2)= -5
Câu 2: Tìm các số nguyên x,y sao cho :
a/ x.y = -3
b/ x.y= -3 và x < y
c/ (x-1)(y+1)= -3
Câu 3: Tìm các số nguyên x,y sao cho :
a/ x.y= -7
b/x.y=-7 và x<y
c/ (x-5).(y+4) = -7
Mình cần gấp!!!
Ai giải sớm mk tick cho ạh :333
Cảm ơn...
câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)
b) xy=-5 với x>y=>x=1,y=-5
c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5 => x=-1, y=-3
* x+1=-5 và y-2=1=> x=-6 , y=3
câu 2 , câu 3 tương tự
Tìm x và y thuộc số nguyên dương:
(x-3).(2.y+1)=7
(2.x+1).(3.y-2)=-55
xy-3.x=-19
3.x+4.y-x.y= 16
(x - 3)(2y + 1) = 7
\(\Rightarrow\)(x - 3)(2y + 1) = 1 . 7
Vì x,y là các số nguyên dương nên ta có bảng sau :
x - 3 | 1 | 7 |
x | 4 | 10 |
2y + 1 | 7 | 1 |
y | 3 | 0 |
Vậy (x ; y) = (4 ; 3) , (10 ; 0)
a, Tìm các số nguyên x ,y thỏa mãn x.y=2016 và x+ y = -95
b, Tìm các số nguyên n để : 7n - 8/ 2n -3 có giá trị lớn nhất
c, Tìm các số x ,y ,z nguyên dương thỏa mãn : x^3+5x^2+21=7^y và x + 5 = 7^z
Tìm x,y thuộc số nguyên dương sao cho :
a) 1+x+y = x.y
b) \(^{x^2+y+1=x.y}\)
tìm các số x,y nguyên ,biết:
a)x.y=5
b)x.y=5 và x>y
c)(x+1).(y-2)=-5
d)x.y=-3
e)x.y=-3 và x<y
g)(x-1).(y+1)=-3
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
1. Tìm các số nguyên x,y biết : a. (x+2).(y-3) =5 b, (x+y) .(x.y-1)=3
a) (x+2)(y-3)=5
=> x+2 ; y-3 thuộc Ư(5)={-1,-5,1,5}
Ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
y-3 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -2 | 2 | 8 | 4 |
Vậy ta có các cặp x,y thõa mãn là : (-3,-2);(-7,2);(-1,8);(3,4)
Câu trả lời hay nhất: Nều phần 2/ làm được thì phần 1 cũng làm tương tự mà
Vì x, y đều là các số nguyên nên x+1 và xy-1 cũng là các số nguyên.
Mà (x+1)(xy-1)=3 nên (x+1) và (xy-1) đều là ước của 3
Ư(3)={+-1; +-3}
Với x+1 = 1 ; xy - 1 = 3
Suy ra x=0, thay vô vế kia => ko có giá trị của y
Với x+1 = -1; xy -1= -3
Suy ra x= -2; thay vô ta được -2y-1=-3 =>y=1
Với x+1 = 3; xy-1 = 1
Suy ra x=2; y=1
Với x+1= -3; xy -1 = -1
Suy ra x= -4; y=0
Vậy có 3 cặp g/t của (x, y) là: (-2; 1); (2;1); (-4; 0)
Chỗ tìm giá trị thì kẻ bảng gồm 4 hàng:
x+1
x
xy-1
=> y = ...............
:D
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42