Cho hình bình hành ABCD có góc ABC lớn hơn 90 độ. Kẻ DA', DC', DD' lần lượt vuông góc AB, BC, AC. Gọi O là giao điểm 2 đường chéo. Chứng minh rằng: 4 điểm A'OC'D' cùng thuộc một đường tròn.
Cho hình thoi ABCD có \(\widehat{ABC}< 90^0\). Gọi O là giao điểm của 2 đường chéo AC và BD. Kẻ OH vuông góc với BC. Gọi M và N là 2 điểm lần lượt thuộc DC và DA, sao cho \(\widehat{MON}=\widehat{DAC}\). Chứng minh rằng 3 đường thẳng BM ; HN và AC đồng quy tại I
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán hỗ trợ giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
@ Trần Ngọc Huyền @ Em lần sau nhớ chia bài ra đăng nhiều lần nhé! .
Đồng ý với cô Nguyễn Thị Linh Chi
Đăng nhiều thế mới nhìn đã choáng
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Bài 4. Cho hình bình hành ABCD có Â > 90 độ , hai đường chéo AC cắt BD tại M. Lấy điểm N đối xứng với C qua D.
1) Chứng minh tứ giác ABDN là hình bình hành
2) Gọi P là giao điểm của AD và BN. Chứng minh DC = 2PM
3) Kẻ AH vuông góc với DC tại H
a) Chứng minh : HP = PD
b) Lấy điểm E là điểm đối xứng với P qua DC. Chứng minh tứ giác HDPE là hình thoi.
4) Tia ED cắt đường thẳng AB tại K. Chứng minh DB = CK
Cho tứ giác ABC có hai đường chéo AC và BD vuông góc với nhau. Gọi M;N;P;Q lần lượt là trung điểm của AB;BC;CD;DA. Chứng minh rằng tứ giác MNPQ là hình bình hành.
Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ N là trung điểm của BC (gt).
\(\Rightarrow\) MN là đường trung bình.
\(\Rightarrow\) MN // AC và MN = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác ADC có:
+ Q là trung điểm của DA (gt).
+ P là trung điểm của CD (gt).
\(\Rightarrow\) QP là đường trung bình.
\(\Rightarrow\) QP // AC và QP = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (2)
Từ (1); (2) \(\Rightarrow\) MN // QP và MN = QP.
Xét tứ giác MNPQ:
+ MN // QP (cmt).
+ MN = QP (cmt).
\(\Rightarrow\) Tứ giác MNPQ là hình bình hành (dhnb).
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo, điểm E thuộc cạnh CD. Đường vuông góc với AB tại A cắt BC ở F. Gọi M là trung điểm của EF. Chứng minh rằng OM là đường trung trực của AC
Cho tam giác ABC có góc A=90 độ, đường cao AD. Kẻ DN // AB (N thuộc AC), DM //AC (M thuộc AB). Gọi O là giao điểm của AD và MN. E, I, K lần lượt là trung điểm của BC, BD, DC.
a. AD = MN
b. AE vuông góc với MN
c. Tứ giác MNKI là hình thang vuông
cho tứ giác ABCD có 2 đường chéo vuông góc với nhau. Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA. Chứng minh 4 điểm trên cùng nằm trên một đường tròn
Cho hình thang cân ABCD, biết AB//CD. Gọi O là giao điểm của hai đường chéo AC và BD.
1) Chứng minh rằng tam giác AOB cân tại O.
2) Gọi M, N, P lần lượt là trung điểm của AD, BD và BC. Gọi E là giao điểm của AN với cạnh DC. Chứng minh rằng M, N, P thẳng hàng và tứ giác ADEB là hình bình hành.
3)Chứng minh rằng AB+BC+CD+DA/4<AC<AB+BC+CD+DA/2