tính A= 5 +10+15+20+.....+640+1280 . tính A
1/50+1/10+1/20+..........+1/640+1/1280
Sửa đê: A=1/5+1/10+...+1/640+1/1280
=1/5(1+1/2+...+1/128+1/256)
Đặt B=1+1/2+...+1/128+1/256
=>2B=2+1+...+1/64+1/128
=>B=2-1/256=511/256
=>A=511/1280
tính nhanh:1/5+1/10+1/20+1/40+........+1/1280
1/5 + 1/5 - 1/10 + 1/10 - 1/20 + 1/20 - 1/40 + ... + 1/640 - 1/1280
= 1/5 + 1/5 - 1/1280 = 511/1280
tính nhanh 1/5+1/10+1/20+1/40+...+1/1280
a) Tính tổng A = 1/5 + 1/10 + 1/20 + 1/40 + ... + 1/1280
b) Tìm số tự nhiên n : 121/27.54/11 < n < 100/21 : 25/126
a/ Đặt 1/5= a, ta có:
1/5 + 1/10 + 1/20 + 1/40 + ... + 1/1280
= 1/a + 1/2 x a + 1/4 x a + ... + 1/256 x a
A = 1/a + 1/2 x a + 1/4 x a + ... + 1/256 x a
2 x A = 2/a + 1/a + 1/2 x a + 1/4 x a + ... + 1/128 x a
=> A = 2/a - 1/256 x a = 2/5 - 1/1280 = 511/1280
b/
\(\frac{121}{27}.\frac{54}{11}=\frac{11.11.27.2}{27.11}=11.2=22\)
\(\frac{100}{21}:\frac{25}{126}=\frac{100}{21}.\frac{126}{25}=\frac{25.4.21.6}{21.25}=4.6=24\)
=> \(22< n< 24\)
=> \(n=23\)
a) Tính tổng A = 1/5 + 1/10 + 1/20 + 1/40 + ... + 1/1280
b) Tìm số tự nhiên n : 121/27.54/11 < n < 100/21 : 25/126
a) \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(A.2=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{640}\)
\(A.2-A=\left(\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{640}\right)-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\right)\)
\(A=\frac{2}{5}-\frac{1}{1280}=\frac{511}{1280}\)
b) \(\frac{121}{27}.\frac{54}{11}< n< \frac{100}{21}:\frac{25}{126}\)
\(22< n< 24\)
=> n = 23
a) Tính tổng A = 1/5 + 1/10 + 1/20 + 1/40 + ... + 1/1280
b) Tìm số tự nhiên n : 121/27.54/11 < n < 100/21 : 25/126
tính nhanh 1/5+1/10+1/20+1/40+...+1/1280
Tính nhanh
1/5+1/10+1/20+1/40+...+1/1280
Tính nhanh :
a) Tính tổng A = 1/5 + 1/10 + 1/20 + 1/40 + ... + 1/1280
b) Tìm số tự nhiên n : 121/27.54/11 < n < 100/21 : 25/126
CÁM ƠN !
b) Ta có: \(\frac{121}{27}.\frac{54}{11}< n< \frac{100}{21}:\frac{25}{126}\)
\(\Leftrightarrow22< n< 24\)
\(\Rightarrow n=23\)