Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Tuấn Minh
9 tháng 4 2017 lúc 20:24

Ta có

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)

=> ĐPCM

hạnh ngân
Xem chi tiết
Nguyễn Đoàn Hồng Thái
Xem chi tiết
Phùng Ngọc Như
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
19 tháng 8 2020 lúc 8:34

Bài 1.

2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2nn + 6n

= 6n \(⋮6\forall n\inℤ\)( đpcm )

Bài 2.

P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18

P = m3 + 8 - m3 + m2 - 9 - m2 - 18

P = 8 - 9 - 18 = -19

=> P không phụ thuộc vào biến M ( đpcm )

Khách vãng lai đã xóa
Lương Minh Nhật
Xem chi tiết
Huy Anh Lê
Xem chi tiết

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều 

Khách vãng lai đã xóa
Phạm Gia Khiêm
Xem chi tiết
Phạm Gia Khiêm
Xem chi tiết
Linh Lê
Xem chi tiết
Bạch Tuyên Nghi
22 tháng 11 2018 lúc 17:10

a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)

\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)

\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)

b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)

Ta có:

\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)

\(B< \dfrac{2n}{4n+2}\)

\(B< \dfrac{2n}{2\left(2n+1\right)}\)

\(B< \dfrac{n}{2n+1}\)