Chứng minh x-1/2021+x-2/2022-x+2023/2023=0
Tính nhanh:
2022 x 2023 - 1/2023 x 2021 + 2022
\(\dfrac{2022\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{\left(2021+1\right)\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2022}{2023\times2021+2022}\)
= 1
Cho các số thực x,y,z thỏa mãn x^2022+y^2022+z^2022=x^2023+y^2023+z^2023, tính P=x^2021+y^2022+z^2023.
x - 2021/2020 + x-2021/2021 - x- 2021/2022 - x- 2021/2023= 0
x= 2002/3000
ko bt đúng ko mong bn nhắc nhở
tìm x 2-x/2021 -1 = 1-x/2022 - x/2023
=>\(\left(\dfrac{2-x}{2021}-1\right)=\left(\dfrac{1-x}{2022}-1\right)+\left(1-\dfrac{x}{2023}\right)\)
=>2023-x=0
=>x=2023
tìm x nguyên 2023+2022+2021+2020+...+x=2023
2022 x 2023 - 3 / 2023 x 2021 + 2020
cứu mình với
Lời giải:
\(\frac{2022\times 2023-3}{2023\times 2021+2020}=\frac{2023\times (2021+1)-3}{2023\times 2021+2020}
\\
=\frac{2023\times 2021+2023-3}{2023\times 2021+2020}=\frac{2023\times 2021+2020}{2023\times 2021+2020}=1\)
tìm x
(x+1)/2023 + (x+2)/2022=(x+3)/2021 + (x+4)/2020
\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)
`(x+1)/2023+(x+2)/2022=(x+3)/2021+(x+4)/2020`
`=>(x+1)/2023+1+(x+2)/2022+1=(x+3)/2021+1+(x+4)/2020+1`
`=>(x+2024)/2023+(x+2024)/2022=(x+2024)/2021+(x+2024)/2020`
`=>(x+2024)/2023+(x+2024)/2022-(x+2024)/2021-(x+2024)/2020=0`
`=>(x+2024).(1/2023+1/2022-1/2021-1/2020)=0`
Vì `1/2023+1/2022-1/2021-1/2020` `\ne` `0`
`=> x+2024=0`
`=>x=-2024`
Gía trị lớn nhất của phân thức 2022/x^2+ 4x+2026 là:
A. 1 B. 2 C. 2021/2022 D. 2021/2023
\(\dfrac{2022}{x^2+4x+2026}=\dfrac{2022}{\left(x+2\right)^2+2022}\)
Ta có \(\left(x+2\right)^2+2022\ge2022\Leftrightarrow\dfrac{2022}{\left(x+2\right)^2+2022}\ge\dfrac{2022}{2022}=1\)
Dấu \("="\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
\(P\left(x\right)\)=\(x^{2023}-2024.x^{2022}+2024.x^{2021}-2024.x^{2020}+.....+2024.x-1\)
tính P ( 2023)
Giải nhanh giúp mik ạ !! đang cânf gấp O(∩_∩)O
Với x = 2023
<=> x + 1 = 2024
Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1
= x2023 - x2023 - x2022 + .. + x2 + x - 1
= x - 1 = 2023 - 1 = 2022