Cho x, y thỏa mãn -6/9 = x/15 = 14/y . Tổng lập phương x^3 + y^3 = ......
Bài 1:
Cho ba số thực x,y,z khác 0 thỏa mãn (x+y+z)^2= x^2+y^2+z^2. Chứng minh rằng 1/x+1/y+1/z =0
Bài 2: Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu
-8x^6 - 12^4 - 6x^2- y^3
Bài 3:Viết biểu thức sau dưới dạng tích
1/9-(2x-y)^2
giúp mình với ạ, mình đang cần gấp ạ. Cảm ơn ạ!
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
cho x,y,z thỏa mãn (x+10)/7=(y+6)/9=(27-z)/11 và 3.x^3+7=199 .Gía trị của tổng x+y+z= ?
Bạn tính x ra sau đó từ tỉ lệ thức ta tính ra đc y và z.
Mình gợi ý nha:
Bạn tính x từ phép tính 3.x3+7=199 (bằng 4)
Rồi bạn tính (x+10)/7 (bằng 2)
Từ đó ta có y+6=18 và 27-z=22
Tính y;z
Tính x+y+z.
Hai chữ số tận cùng của 51^51
2. Trung bình cộng của các giá trị của x thỏa mãn: (x - 2)^8 = (x - 2)^6
3. Số x âm thỏa mãn: 5^(x - 2).(x + 3) = 1
4. Số nguyên tố x thỏa mãn: (x - 7)^x+1 - (x - 7)^x+11 = 0
5. Tổng 3 số x,y,y biết: 2x = y; 3y = 2z và 4x - 3y + 2z = 36
6. Tập hợp các số hữu tỉ x thỏa mãn đẳng thức: x^2 - 25.x^4 = 0
7. Giá trị của x trong tỉ lệ thức: 3x+2/5x+7 = 3x-1/5x+1
8. Giá trị của x thỏa mãn: (3x - 2)^5 = -243
9. Tổng của 2 số x,y thỏa mãn: !x-2007! = !y-2008! < hoặc = 0
10. số hữu tỉ dương và âm x thỏa mãn: (2x - 3)^2 = 16
11. Tập hợp các giá trị của x thỏa mãn đẳng thức: x^6 = 9.x^4
12. Số hữu tỉ x thỏa mãn: |x|. |x^2+3/4| = X
có khùng hk vậy hùng tự đăng tự giải ls
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
1 tìm x biết x/15=3/5+ -2/3
2 cho x,y thuộc z thỏa mãn 12/-6=x/5=y/3
3 tập hợp các số x thỏa mãn -7/2<x<3/2 có ... phần tử
4 phân số tối giản( với mẫu dương) của phân số 20/-140 có tổng của tử và mẫu bằng 6
5 tìm phân số=188887/211109 mà tổng của tử và mẫu bằng 6
Cho đáp án:
1/ x = -1
2/ x = -10; y = -6
3/ 9 phần tử
4/ = 6
5/ Không chắc
Nhớ kiểm tra lại hộ
Bạn có thể giải giúp mình ko mình đang cần gấp
câu 1: Số phần tử của tập hợp các số nguyên x thỏa mãn -6/2 bé hơn hoặc bằng x bé hơn hoặc bằng 5/2 là
câu 2 -10/15 = x/-9 = -8/y = z/-21. Khi đó x+y+z bằng
câu 3 tổng bình phương của các số nguyên x thỏa mãn -5/2 bé thua x bé thua hoặc bằng 1/2 là
Giải giúp mình nha các bạn đúng và nhanh mình tick nha
Cho x,y,z là những số dương thỏa mãn xyz=1. Tìm giá trị nhỉ nhất của biểu thức
\(A=\frac{x^9+y^9}{x^6+x^3y^3+y^6}+\frac{y^9+z^9}{y^6+y^3z^3+z^6}+\frac{z^9+x^9}{z^6+z^3x^3+x^3}\)
cho các số nguyên x,y thỏa mãn điều kiện x^2+y^2+9= 2(xy+3x+3y) chứng minh x,y chia hết cho 3 và x/3,y/3 đều là các số chính phương
cho x,y,m,n thuộc z thỏa mãn x+y=m+n.cm x^2+y^2+m^2+n^2 là tổng của 3 số chính phương
bài của Never_NNL sai nhé:
\(x+y=m+n\) \(\Rightarrow\)\(n=x+y-m\)
Ta có: \(A=x^2+y^2+m^2+n^2\)
\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)
\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)
\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)
Vậy A là tổng của 3 số chính phương
x + y = m + n
m = x + y - n
x^2 + y^2 + ( x + y - n )^2 + n^2
= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2
= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2
= 2x^2 + 2y^2 + 2xy
= x^2 + y^2 + ( x^2 + y^2 + 2xy )
= x^2 + y^2 + ( x + y )^2 ( dpcm )
Cho 3 số x<y<z thỏa mãn : x+y+z=51.biết rằng 3 tổng của 2 trong 3 số đã cho tỉ lệ với 9, 12, 13. tìm x,y ,z ?
Ta có \(y< z\)
=> \(x+y< x+z\)(1)
và \(x< y\)
=> \(x+z< y+z\)(2)
Từ (1) và (2) => \(x+y< x+z< y+z\)
Theo đề bài, ta có:\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}=\frac{2\left(x+y+z\right)}{9+12+13}=\frac{2.51}{34}=\frac{102}{34}=3\)(*)
=> \(x+y=27\)
và \(x+y=51-z\)
=> \(51-z=27\)
=> \(z=24\)
(*) => \(x+z=36\)
và \(x+z=51-y\)
=> \(51-y=36\)
=> \(y=15\)
Ta lại có: \(x=51-\left(y+z\right)\)
=> \(x=51-\left(15+24\right)\)
=> \(x=51-39=12\)