Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Anh Quân
Xem chi tiết
Huy Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 9:37

Δ=(-m)^2-4(2m-4)

=m^2-8m+16=(m-4)^2>=0

=>Phương trình luôn có hai nghiệm

a: x1^2+x2^2=13

=>(x1+x2)^2-2x1x2=13

=>m^2-2(2m-4)-13=0

=>m^2-4m-5=0

=>m=5 hoặc m=-1

b: x1^3+x2^3=9

=>(x1+x2)^3-3*x1x2(x1+x2)=9

=>m^3-3*(2m-4)*m=9

=>m^3-6m^2+12m-9=0

=>m=3

Phạm Tuân
Xem chi tiết
Nott mee
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:23

Δ=(2m+5)^2-4(-2m-6)

=4m^2+20m+25+8m+24

=4m^2+28m+49

=(2m+7)^2>=0

Để phương trình có hai nghiệm phân biệt thì 2m+7<>0

=>m<>-7/2

|x1|+|x2|=7

=>x1^2+x2^2+2|x1x2|=49

=>(x1+x2)^2-2x1x2+2|x1x2|=49

=>(2m+5)^2-2(-2m-6)+2|2m+6|=49

=>4m^2+20m+25+4m+12+2|2m+6|=49

=>4m^2+24m-12+4|m+3|=0

TH1: m>=-3

=>4m^2+24m-12+4m+12=0

=>4m^2+28m=0

=>m=0(nhận) hoặc m=-7(loại)

TH2: m<-3

=>4m^2+24m-12-4m-12=0

=>4m^2+20m-24=0

=>m^2+5m-6=0

=>m=-6(nhận) hoặc m=-1(loại)

Uzumaki Naruto
Xem chi tiết
Bui Huyen
25 tháng 3 2019 lúc 17:35

\(\Delta=m^2+4m+4-8m=\left(m-2\right)^2\)

Để pt có 2 nghiệm phân biệt thì m khác 2

Theo Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=m+2\\x_1\cdot x_2=2\end{cases}}\)

Mà \(x_1-2x_2=0\Rightarrow\frac{2}{x_2}-2x_2=0\Rightarrow2-2x_2^2=0\Rightarrow2\left(1-x_2^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x_2=1\Rightarrow x_1=2\\x_2=-1\Rightarrow x_1=-2\end{cases}\Rightarrow\orbr{\begin{cases}m=0\\m=-5\end{cases}}}\)(t/m)

Văn Như Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 21:56

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

𝓓𝓾𝔂 𝓐𝓷𝓱
5 tháng 4 2021 lúc 21:58

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 22:00

2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)

a) Ta có: \(x_1+x_2=-1\)

\(\Leftrightarrow-2m=-1\)

hay \(m=\dfrac{1}{2}\)

b) Ta có: \(x_1^2+x_2^2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)

\(\Leftrightarrow4m^2-4m+2-13=0\)

\(\Leftrightarrow4m^2-4m+1-12=0\)

\(\Leftrightarrow\left(2m-1\right)^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)

Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 11:07

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0

=>Phương trình luôn có hai nghiệm

\(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)

\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)

\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)

\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)

\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)

\(\Leftrightarrow4m^2-12m-3=0\)

Đến đây bạn chỉ cần giải pt bậc hai là được rồi

Trầnn Thị Ngọc Huyềnn
Xem chi tiết