1/1.2+1/3.4+1/5.6+...+1/49.50 so sánh với 1
So sánh 1/1.2 + 1/2.3 + 1/3.4 +....+ 1/49.50 với 1
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}
Ta có : 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50 < 1
Nên 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 < 1
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
A=1/1.2+1/3.4+1/5.6+...+1/49.50. Chứng minh A<1
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\)+....+ \(\dfrac{1}{49.50}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)+ \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
A = 1 - \(\dfrac{1}{50}\) < 1
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\)+.....+ \(\dfrac{1}{49.50}\) < 1 ( đpcm)
A=1/1.2+1/3.4+1/5.6+....+1/49.50 chứng minh rằng A<1
a=1/1.2+1/3.4+1/5.6+....+1/49.50<1 chứng minh rằng a<1
a) A = 1/1.2+ 1/3.4+ 1/5.6+...+ 1/99.100
CMR: 7/12<A< 5/6
b) CMR: 1/1.2+ 1/3.4+ 1/5.6+...+1/49.50 = 1/26+ 1/27+ 1/28+...+1/50
a)A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) > 1 / (1*2) + 1 / (3*4) = 1 / 2 + 1 / 12 = 7 / 12 ♦
A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) =
(1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 <
1 - 1 / 2 + 1 / 3 = 5 / 6 ♥
♦, ♥ => 7 / 12 < A < 5 / 6
b)ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
so sánh 1/1.2+1/2.3+1/3.4+..........1/49.50 với 1 giúp mk nha cảm ơn
đặt A=1/1.2+1/2.3+1/3.4+..........1/49.50
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}<1\)
vậy A<1
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
1 - 1/50 < 1
1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/49.50
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/49 - 1/50
1 - 1/50 < 1
cmr A=1/1.2+1/3.4+1/5.6+.......+1/49.50=1/26+1/27+........+1/50
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}=\frac{49}{50}\)
mà A=49/50
=>1/26+1/27+...+1/50 =49/50
CMR: 1/1.2+1/3.4+1/5.6+....+1/49.50+1/26=1/27=....=1/50