Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cường Nguyễn
Xem chi tiết
Lê Hoài Duyên
Xem chi tiết
tth_new
23 tháng 11 2018 lúc 18:58

Ta có: \(A=\frac{2m^2-4m+5}{m^2-2m+2}\)

\(=\frac{2m^2-4m+2+3}{m^2-2m+1+1}=\frac{2\left(m^2-2m+1\right)+3}{\left(m^2-2m+1\right)+1}\)

\(=\frac{2\left(m-1\right)^2+3}{\left(m-1\right)^2+1}\ge\frac{3}{1}=3\) (do \(\left(m-1\right)^2\ge0\))

Dấu "=" xảy ra \(\Leftrightarrow m-1=0\Leftrightarrow m=1\)

Vậy \(A_{min}=3\Leftrightarrow m=1\)

Bui Huyen
14 tháng 8 2020 lúc 21:56

\(A=2+\frac{1}{m^2-2m+1+1}=2+\frac{1}{\left(m-1\right)^2+1}\)

\(\left(m-1\right)^2+1\ge1\Leftrightarrow\frac{1}{\left(m-1\right)^2+1}\le1\)

\(\Rightarrow A\le3\)

 \("="\Leftrightarrow m=1\)

Khách vãng lai đã xóa
tth_new
15 tháng 8 2020 lúc 5:46

chết làm lộn r-_-

Khách vãng lai đã xóa
NT Ann
Xem chi tiết
Akai Haruma
15 tháng 10 2020 lúc 11:13

Lời giải:

$2m^2+4m+4=2(m^2+2m+1)+2=2(m+1)^2+2\geq 2$ với mọi $m\in\mathbb{R}$

$\Rightarrow \sqrt{2m^2+4m+4}\geq \sqrt{2}$

$\Rightarrow A=\frac{1}{\sqrt{2m^2+4m+4}}\leq \frac{1}{\sqrt{2}}$

Vậy GTLN của $A=\frac{1}{\sqrt{2}}$ khi $m+1=0\Leftrightarrow m=-1$

Khách vãng lai đã xóa
phan gia huy
Xem chi tiết
Đinh Đức Hùng
17 tháng 7 2018 lúc 17:28

Đặt \(A=\frac{5-2m}{m^2+2}\Leftrightarrow Am^2+2A-5+2m=0\)

\(\Leftrightarrow Am^2+2m+\left(2A-5\right)=0\)

Để \(PT\) trên có nghiệm \(\Leftrightarrow\Delta'=1-A\left(2A-5\right)=-2A^2+5A+1\ge0\)

\(\Leftrightarrow\frac{5-\sqrt{33}}{4}\le A\le\frac{5+\sqrt{33}}{4}\)

Kết quả ko đẹp lắm nếu cảm thấy sai thì bạn lại đề; mình giải ko sai đâu

Cao Thanh Nga
Xem chi tiết
nguyen ba quan
18 tháng 6 2018 lúc 10:28

\(A=\frac{2m^2-4m+5}{m^2-2m+2}=\frac{3\left(m^2-2m+2\right)-\left(m^2-2m+1\right)}{m^2-2m+2}\)

                                           \(=3-\frac{\left(m-1\right)^2}{m^2-2m+2}\le3do\hept{\begin{cases}\left(m-1\right)^2\ge0\\\left(m-1\right)^2+1>0\end{cases}\Rightarrow\frac{\left(m-1\right)^2}{m^2-2+2}\ge0}\)

dấu ''='' xay ra khi và chỉ khi x=1 

 VẬY GTLN CỦA ALAF 3 TẠI X=1

Hoàng Lâm Vũ
Xem chi tiết
hoàng thanh
22 tháng 5 2015 lúc 21:49

đặt 2m/(m^2+1)=a. nhân chéo lên rùi đưa về dạng pt bậc hai xét denta lớn hơn bằng 0.=>min,mã. OK!

như phạm
Xem chi tiết
Nguyệt
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Nguyệt
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

như phạm
3 tháng 12 2018 lúc 0:03

Thanks. <3

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 12:16

\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)

\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)

\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)

\(\Leftrightarrow4S^2-16S+15\le0\)

\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)

\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)

\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)

Hồ Sỹ Hùng
Xem chi tiết