1)tính
1.2+2.3+3.4+....+2016.2017
2)tìm a; b thỏa mãn \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)và 8b-9a=31 (a;b thuộc N)
Tìm
A=1.2+2.3+3.4+...+30.31
B=1+(1+2)+(1+2+3)+...+(1+2+...+20)
Trả lời :
A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 30 . 31
=> 3A = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 30 . 31 . 3
=> 3A = 1 . 2 . 3 + 2 . 3 . (4 - 1) + 3 . 4 . (5 - 2) + ... + 30 . 31 . (32 - 29)
=> 3A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 30 . 31 . 32 - 29 . 30 . 31
=> 3A = 30 . 31 . 32
=> 3A = 29760
=> A = 9920
a) \(A=1.2+2.3+3.4+.........+30.31\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+........+30.31.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+30.31.\left(32-29\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+30.31.32-29.30.31\)
\(=30.31.32\)
\(\Rightarrow A=\frac{30.31.32}{3}=9920\)
b) \(B=1+\left(1+2\right)+\left(1+2+3\right)+........+\left(1+2+...........+20\right)\)
\(=\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+.......+\frac{20.21}{2}\)
\(=\frac{1.2+2.3+3.4+.......+20.21}{2}\)
Làm tương tự như phần a ta được:
\(1.2+2.3+3.4+.......+20.21=\frac{20.21.22}{3}=3080\)
\(\Rightarrow B=\frac{3080}{2}=1540\)
tìm A biết A=1.2+2.3+3.4+4.5+...+99.100+100.101
A = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 + ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102
= 100.101.102
= 1030200
⇒ A = 1030200 : 3
= 343400
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
Tính nhanh A = 1/1.2 + 1/2.3 + 1/3.4 + 1/3.4 + ... + 1/49.50
Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}\)
=>\(A=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}\)
\(\Rightarrow A=\frac{49}{50}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{50}{50}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Tìm số tự nhên a biết:
1/1.2+1/2.3+1/3.4+....+1/a.(a+1)=99/100
lm giúp mk đi
1.2+2.3+3.4-...+n.(n+1) ,tìm stn n
Tìm \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}\)
\(A=\frac{100}{100}-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ai k mk mk k lại
Tìm A= 1/1.2 +1/2.3+1/3.4+ .........1/49.50
Giúp em với!!!!!! Ai nhanh e tik ạ
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}+\frac{51-50}{50.51}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{50}{51}\)
A= 1/1.2 +1/2.3+1/3.4+ .........1/49.50
\(A=1-\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Tìm x:
a) |x - 2/5| =2,1
b)1/1.2+1/2.3+1/3.4+.......+1/x(x+1)=889/890
1/1.2+1/2.3+1/3.4+...+1/X.(X+1)=10/11 (tìm X
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{10}{11}\)
=>\(1-\frac{1}{x+1}=\frac{10}{11}\)
=>\(\frac{1}{x+1}=1-\frac{10}{11}\)
=>\(\frac{1}{x+1}=\frac{1}{11}\)
=>x+1=11
=>x=10