dư trong phép chia đa thức cho đa thức x+1 là
Cho đa thức f(x)=x^3+x^2-2
Số dư trong phép chia đa thức f(x) cho x+1 là f(-1) =-2
Số dư trong phép chia đa thức f(x) cho x-2 là f(2) =10
Số dư trong phép chia đa thức f(x) cho x-1 là f(1)=0,nghĩa la f(x) chia hết cho (x-1)
Em háy chọn 1 đa thức f(x) cho (x-a) với f(a) bằng cách cho a nhận các giá trị bất kì để cùng kiểm tra kết quả sau :
"Số dư trong phép chia đa thức f(x) cho (x-a) đúng bằng f(a)’’
Cho mình xin cách làm đi
Nó là định lí Bézout đấy bạn ^^
Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)
Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)
Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)
Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a
Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm
biết đa thức f(x) chia cho đa thức x-2 dư 7 , chia cho đa thức x2+1 dư 3x+5 . Tìm dư trong phép chia đa thức f(x) cho đa thức (x2+1)(x-2)
đơn giản thì trả lời đi , fly color à bạn :)))
I. Tìm đa thức dư trong phép chia đa thức P(x) cho da thức (x-2)(x^ 2 +1),biết P(. ) chia cho vă7 có dư là 13; P(x) chia cho x ^ 2 + 1 có dư là 3x+ underline 2
cho đá thức dư trong phép chia đa thức x^4+6x^3-5x^2-3x+10 cho đa thức x^2+x+1 là
\(=\dfrac{x^4+x^3+x^2+5x^3+5x^2+5x-11x^2-11x-11+3x+21}{x^2+x+1}\)
Vậy: Đa thức dư là 3x+21
\(=\left(x^4+x^3+x^2+5x^3+5x^2+5x-11x^2-11x-11+8x+21\right):\left(x^2+x+1\right)\\ =\left[x^2\left(x^2+x+1\right)+5x\left(x^2+x+1\right)-11\left(x^2+x+1\right)+8x+21\right]:\left(x^2+x+1\right)\\ =x^2+5x-11\left(\text{dư }8x+21\right)\)
giả sử đa thức f(x) chia cho x+1 dư 4, và chia cho x^2 +1 có dư là 2x+3 tìm dư trong phép chia đa thức f(x) cho (x+1)(x^2+1)
Cho đa thức f(x)=x^3-3x^2+2. Tìm đa thức thương và đa thức dư trong phép chia đa thức f(x) cho 2x+1
Biết đa thức f(x) chia cho x-3 dư 7, chia cho x-2 dư 5. Tìm đa thức dư trong phép chia đa thức f(x) cho x^2-5x+6
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1
Cho đa thức f(x)=x^2009+x^2008+1 Số dư trong phép chia đa thức f(x)cho đa thức x^2+x+1là
Lời giải:
$f(x)=x^{2009}+x^{2008}+1$
$=(x^{2009}-x^2)+(x^{2008}-x)+(x^2+x+1)$
$=x^2(x^{2007}-1)+x(x^{2007}-1)+(x^2+x+1)$
$=x^2[(x^3)^{669}-1]+x[(x^3)^{669}-1]+(x^2+x+1)$
$=x^2(x^3-1)[(x^3)^{668}+....+1]+x(x^3-1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)[(x^3)^{668}+....+1]+x(x-1)(x^2+x+1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)A(x)+x(x-1)(x^2+x+1)A(x)+(x^2+x+1)$
$=(x^2+x+1)[x^2(x-1)A(x)+x(x-1)A(x)+1]\vdots x^2+x+1$
Cho đa thức A = 3 10 5 x x a 3 2 và B = 3 1 x
a) Hãy đặt phép chia và tìm dư R trong phép chia A cho B.
b) Tìm a để đa thức A chia hết cho đa thức B