Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Hồng Thắm
Xem chi tiết
Nguyen Van Huong
9 tháng 4 2017 lúc 8:59

Ta có : \(A=0,3.\left(1983^{1980}-1917^{1916}\right)\) ( Sửa đề : Đề sai rồi )

Ta thấy \(1983^{1980}\) tận cùng là 1

\(1917^{1916}\) tận cùng là 1

Don đó \(\left(1983^{1980}-1917^{1916}\right)\) tận cùng 0

 Do đó \(0,3.\left(1983^{1980}-1917^{1917}\right)\) nguyên

Do đó A là số nguyên ( đpcm )

Trà My
9 tháng 4 2017 lúc 9:16

\(A=0,3.\left(1983^{1983}-1917^{1917}\right)=\frac{3\left(1983^{1983}-1917^{1917}\right)}{10}\)

Để A nguyên thì \(\left(1983^{1983}-1917^{1917}\right)⋮10\)

rồi bạn xét chữ số tận cùng của 19831983 và 19171917 , chúng sẽ đều có tận cùng là 7, trừ cho nhau có tận cùng là 0

suy ra nó chia hết cho 10

Ann Dau
Xem chi tiết
HÀ DIỆU HUYỀN
Xem chi tiết
tiến dũng
4 tháng 1 2018 lúc 21:00

tc 1983^1983=1983^1980.1983^3=(1983^495.4)(...7.)=(....1)(....7)=(.....7)

1917^1917=1917^1916.1917=(1917^479.4).1917=(...1).(..7)=(...7)

1983^1983-1917^1917=(...7)-(..7)=(....0)

vì 0,3.(...0)=0,3.10.(...)=3.(...) vậy A là số nguyên

Nguyễn Chí Cường
Xem chi tiết
Nguyễn Chí Cường
Xem chi tiết
Nguyễn Chí Cường
Xem chi tiết
khánh ngân trần
Xem chi tiết
Ann Dau
Xem chi tiết
đào văn thái
Xem chi tiết
o0o I am a studious pers...
28 tháng 9 2016 lúc 21:19

\(0.3\left(1983^{1983}+1917^{1917}\right)\)

\(=0\)

Vậy kết quả của phép tính trên là 1 số nguyên

Die Devil
28 tháng 9 2016 lúc 21:22

Muốn chứng tỏ 0,3 * (1983^1983 – 19171917) là số nguyên ta hãy chứng tỏ biểu thức 1983^1983 – 1917^1917 chia hết cho 10, hay nói cách khác biểu thức đó có kết quả là một số có chữ số tận cùng là 0.

Nhận thấy: 19834 có chữ số tận cùng bằng 1

19833 có chữ số tận cùng bằng 7

Nên 19831983 = (19834)495 * 19833 = 1983(4 * 495) + 3 có chữ số tận cùng là 7.

Nhận thấy 19174 có chữ số tận cùng bằng 1

Nên 19171917 = (19174)479 * 1917 có chữ số tận cùng là 7.

Do đó, hiệu số của biểu thức (19831983 – 19171917) sẽ có chữ số tận cùng là 0.

Vậy đáp số của phép tính 0,3 * (19831983 – 19171917) là số nguyên.

Lưu ý: Bài toán này có thể dùng nhị thức Newton để chứng minh đáp số của biểu thức