chứng minh: tổng của ba số tự nhiên liên tiếp thì chia hết cho 3
a) Chứng minh rằng trong hai số tự nhiên liên tiếp có một số tự nhiên chhia hết cho 2
b) Chứng minh rằng trong ba số tư nhiên liên tiếp có một số chia hết cho 3
c) Chứng minh tích của hai số chẵn liên tiếp chia hết cho 4
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a)
gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:
*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2
*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2
vậy DPCM
a, tích của 2 số tự nhiên liên tiếp thì chia hết cho 2
b, tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
hai số tự nhiên liên tiếp thì phải có 1 số chẵn và 1 số lẻ mà tích của 1 số chẵn với 1 số lẻ thì là 1 số chẵn
\(a,\) Trong hai số tự nhiên liên tiếp luôn có một số chẵn và lẻ do đó tích hai số tự nhiên liên tiếp là:
\(\text{chẵn . lẻ = chẵn}\) \(\xrightarrow[]{}\) \(\text{Chia hết cho 2}\)
\(b,\) Trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3 và ba số tự nhiên liên tiếp có thể là \(3k;3k+1;3k+2\) do đó tích ba số tự nhiên liên tiếp là:
\(3k.\left(3k+1\right).\left(3k+2\right)\xrightarrow[]{}\text{Chia hết cho 3}\)
Bài 7 : Chứng minh rằng :
a. Tích của 3 số tự nhiên liên tiếp chia hết cho 9 .
b. Tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
Chứng minh rằng :
a) tổng của n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ.
b) Tổng của n dố tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn
Chứng minh tích của 4 số tự nhiên liên tiếp chia hết cho 24
Đáp án:
Vì bốn số liên tiếp phải có 1 số chia hết cho 4 nên tích đó chia hết cho 4.
Vd: 1*2*3*4 thì có 4 chia hết cho 4. thử tính: 1*2*3*4=24, 24/4=6 nên chia hết cho 4.
Vd: 7*8*9*10 thì có 8 chia hết cho 4. thử tính: 7*8*9*10=5040, 5040/4=1260 nên chia hết cho 4.
Vd: 27*28*29*30 thì có 28 chia hết cho 4. thử tính: 27*28*29*30=657220, 657220/4=164430 nên chia hết cho 4.
Trong 4 số tự nhiên liên tiếp sẽ có 1 số \(⋮\) 2, 1 số \(⋮\) 3, 1 số \(⋮\) 4.
Mà 2x 3x 4= 24.
=> Tích 4 số tự nhiên liên tiếp \(⋮\) 24.
Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM
chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 3 stn liên tiếp là: a;a+1;a+2
Ta có : a+a+1+a+2=3a+(1+2)=3a+3
Mà 3a chia hết cho 3 ; 3 chia hết cho 3
Nên 3a+3 chia hết cho 3
Vậy tổng 3 stn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2
ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3
Vậy 3 số tự nhiên liên tiếp chia hết cho 3
Giải :
Tổng 3 STN liên tiếp bằng :
A + ( A +1 ) + ( A + 2 )
= ( A + A + A ) + ( 1 + 2 )
= 3A + 3
Mà 3A chia hết cho 3; 3 chia hết cho 3
\(\Rightarrow\)A + ( A + 1 ) + ( A + 2 ) chia hết cho 3 với mọi A ( đpcm ).
Chứng minh rằng tích ba số tự nhiên liên tiếp chia hết cho 6
Gọi 3 số tự nhiên đó là: \(n-1;\)\(n;\)\(n+1\) (\(n\ge1;\)\(n\in N\))
Tích 3 số là: \(A=\left(n-1\right)n\left(n+1\right)\)
Nếu: \(n=3k\)thì: \(A⋮3\)Nếu: \(n=3k+1\)thì: \(n-1=3k+1-1=3k\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)Nếu: \(n=3k+2\)thì: \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3
trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2 (1)
trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 3 (2)
(2; 3) = 1 (3)
(1)(2)(3) => tích của 3 số tự nhiên liên tiếp chia hết cho 6
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
MN CHỈ GIÚP EM BÀI NÀY VỚI Ạ!! EM CẢM ƠN❤
Chứng minh rằng:
a) 10^10 - 1 chia hết cho 9
b) 10^9 + 2 chia hết cho 3
c) Tổng hai số chẵn liên tiếp không chia hết cho 4
d) Tích của 2 số tự nhiên liên tiếp bao giờ cũng là 1 số chẵn
e) Tích hai số chẵn liên tiếp chia hết cho 8
BÀI NÀY DÀI MONG MN GIÚP EM Ạ!!
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3