Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Ánh
Xem chi tiết
Nguyễn Ngọc Tuệ Anh
Xem chi tiết
Nguyễn Hà Vi
9 tháng 5 2017 lúc 13:29

a) BE,CF là trung tuyến \(\Rightarrow AF=BF=AE=EC\)(AB=AC),                                                                                                                           Xét tam giác ABE và tam giác ACF : AF=AE(CMT) 

                                                           AB=AC(gt)  ; góc Achung    ; 

                       Vậy tam giác ABC= tam giác ACF (c-g-c) 

b)    Tam giác AEF cân tai A vì AF=AE suy ra góc AFE=góc ABC (đều cân tại A) mà ở vị trí đồng vị suy ra EF//BC (đpcm)

c) Ta có Glà giao điểm 2 đường trung tuyến suy ra G là trọng tâm suy ra AG cũng là trung tuyến 

 Mà tam giac ABC cân suy ra AG cũng là đường cao suy ra AG vuông góc với BC 

mình kém lắm:(
Xem chi tiết
kisibongdem
30 tháng 4 2022 lúc 13:50

a) 

Do \(\triangle ABC \) cân ( \(AB=AC\) )

\(\Rightarrow \widehat{ABC} = \widehat{ACB}\)

Mà \(BE ; CF\) lần lượt là đường phân giác của \(\widehat{ABC} ; \widehat{ACB}.\)

\(\Rightarrow \widehat{ABE} = \widehat{ACF} \)

Xét \(\triangle ABE\) và \(\triangle ACF\) ta  có :

\(AB = AC\) ( gt )

\(\widehat{ABC}\) chung 

\(\widehat{ABE} = \widehat{ACF} \) ( cmt )

\(\Rightarrow \) \(\triangle ABE\) \(=\) \(\triangle ACF\) ( g.c.g )

 

kisibongdem
30 tháng 4 2022 lúc 14:05

Do \(\triangle ABE = \triangle ACF\)

\(\Rightarrow \widehat{BAH} = \widehat{CAH} \) ( 2 góc tương ứng )

Xét \(\triangle ABD\) và \(\triangle ACD\) ta có :

\(AD\) chung  

\(AB=AC\) ( gt )

\( \widehat{BAH} = \widehat{CAH} \) ( cmt )

\(\Rightarrow \) \(\triangle ABD\) \(=\) \(\triangle ACD\)  ( c.g.c )

\(\Rightarrow BD=DC\) ( 2 cạnh tương ứng ) (1)

Mà D nằm trên BC . 

\(\Rightarrow BD+DC=BC\) (2)

Từ (1) và (2) ta được \(D\) là trung điểm của \(BC\)

Xét \(\triangle DHF\) và \(\triangle CHE\) có :

\(\widehat{FBH} = \widehat{ECH} \) ( theo câu a, )

\(\widehat{FHB} = \widehat{EHC} \) ( 2 goc đối đỉnh )

Mà \(\widehat{FBH} +\) \(\widehat{FHB}\) \(+ \widehat{BFH}\) \(= \) \(\widehat{ECH} +\) \(\widehat{EHC} + \widehat{CEH} = 180^o\)

\(\Rightarrow\) \(\widehat{BFH} = \) \(\widehat{CEH} \) (1)

Mà chúng ở vị trí đồng vị . (2)

Từ (1) và (2) \(\Rightarrow \) \(EF\) // \(BC\) 

 

    

 

 

chuche
30 tháng 4 2022 lúc 14:12

em từ từ nhé !

ha xuan duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 22:17

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co

góc A chung

=>ΔAEB đồng dạng với ΔAFC

b: ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

Phương Trâm
Xem chi tiết
công đạt
13 tháng 5 2019 lúc 11:16

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

Mạnh Lê
13 tháng 5 2019 lúc 11:20

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...     

Aragon
Xem chi tiết
Nguyễn Thanh Thảo
Xem chi tiết
Nguyễn Thanh Thảo
2 tháng 5 2022 lúc 11:36

Helps me !!!

 

Nguyễn Mai Trang
Xem chi tiết
Duong Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 21:46

a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có

BE chung

\(\widehat{ABE}=\widehat{IBE}\)

Do đó:ΔABE=ΔIBE

b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có

EA=EI

\(\widehat{AEM}=\widehat{IEC}\)

Do đó;ΔAEM=ΔIEC

Suy ra: EM=EC

hay ΔEMC cân tại E

c: Xét ΔBMC có BA/AM=BI/IC

nên AI//MC

Duong Nguyen
4 tháng 3 2022 lúc 21:48

 SaiS