Cho tam giác ABC cân tại A có trung tuyên BE và CF cắt nhau tại G chứng minh: a,tam giác ABE=tam giác ACF b,chứng minh EF song song BC c,AG vuông góc BC
Cho tam giác ABC cân tại A,trung tuyến BE và CE cắt nhau tại G.
a)Chứng minh tam giác ABE=tam giác ACF
b)Chứng minh EF song song BC
c)Chứng minh AG vuông góc BC
cho tam giác ABC cân tại A,có trung tuyến BE và CF cắt tại G. C/m: a) tam gics ABE = tam giác ACF. b)C/m EF//BC .c)AG vuông góc BC
a) BE,CF là trung tuyến \(\Rightarrow AF=BF=AE=EC\)(AB=AC), Xét tam giác ABE và tam giác ACF : AF=AE(CMT)
AB=AC(gt) ; góc Achung ;
Vậy tam giác ABC= tam giác ACF (c-g-c)
b) Tam giác AEF cân tai A vì AF=AE suy ra góc AFE=góc ABC (đều cân tại A) mà ở vị trí đồng vị suy ra EF//BC (đpcm)
c) Ta có Glà giao điểm 2 đường trung tuyến suy ra G là trọng tâm suy ra AG cũng là trung tuyến
Mà tam giac ABC cân suy ra AG cũng là đường cao suy ra AG vuông góc với BC
Cho tam giác ABC cân(AB=AC). Các đường phân giác BE,CF cắt nhau tại H. a)chứng minh tam giác ABE=tam giác ACF b)tia AH cắt BC tại D.chứng minh D là trung điểm BC và EF//BC c)chứng minh AH là trung trực của EF.so sánh HF và HC d)tìm điều kiện của tam giác ABC để HC=2HD
a)
Do \(\triangle ABC \) cân ( \(AB=AC\) )
\(\Rightarrow \widehat{ABC} = \widehat{ACB}\)
Mà \(BE ; CF\) lần lượt là đường phân giác của \(\widehat{ABC} ; \widehat{ACB}.\)
\(\Rightarrow \widehat{ABE} = \widehat{ACF} \)
Xét \(\triangle ABE\) và \(\triangle ACF\) ta có :
\(AB = AC\) ( gt )
\(\widehat{ABC}\) chung
\(\widehat{ABE} = \widehat{ACF} \) ( cmt )
\(\Rightarrow \) \(\triangle ABE\) \(=\) \(\triangle ACF\) ( g.c.g )
Do \(\triangle ABE = \triangle ACF\)
\(\Rightarrow \widehat{BAH} = \widehat{CAH} \) ( 2 góc tương ứng )
Xét \(\triangle ABD\) và \(\triangle ACD\) ta có :
\(AD\) chung
\(AB=AC\) ( gt )
\( \widehat{BAH} = \widehat{CAH} \) ( cmt )
\(\Rightarrow \) \(\triangle ABD\) \(=\) \(\triangle ACD\) ( c.g.c )
\(\Rightarrow BD=DC\) ( 2 cạnh tương ứng ) (1)
Mà D nằm trên BC .
\(\Rightarrow BD+DC=BC\) (2)
Từ (1) và (2) ta được \(D\) là trung điểm của \(BC\)
Xét \(\triangle DHF\) và \(\triangle CHE\) có :
\(\widehat{FBH} = \widehat{ECH} \) ( theo câu a, )
\(\widehat{FHB} = \widehat{EHC} \) ( 2 goc đối đỉnh )
Mà \(\widehat{FBH} +\) \(\widehat{FHB}\) \(+ \widehat{BFH}\) \(= \) \(\widehat{ECH} +\) \(\widehat{EHC} + \widehat{CEH} = 180^o\)
\(\Rightarrow\) \(\widehat{BFH} = \) \(\widehat{CEH} \) (1)
Mà chúng ở vị trí đồng vị . (2)
Từ (1) và (2) \(\Rightarrow \) \(EF\) // \(BC\)
cho tam giác ABC có ba góc nhọn (AB<AC), có 2 đường cao BE,CF cắt nhau tại H. a/ chứng minh tam giác ABE đồng dạng tam giác ACF. b/ chứng minh AB.AF=AC.AE c/ gọi O là trung điểm BC, I là trung điểm AH. Chứng minh OI vuông góc EF. d/ Gọi M là giao điểm của OI vè EF. cho biết BAC=60. Tính tỉ số AM/AO
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co
góc A chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm
a) Tính độ dài cạnh BC.
b) Trên tia BA lấy điểm D sao cho BD = BC. Kẻ DE vuông góc với BC tại E. Chứng minh tam giác BAC = tam giác BED.
c) Chứng minh tam giác ABE cân và AE song song DC.
d) Gọi M là trung điểm của AC. Hai đường thẳng AE và MD cắt nhau tại F. Chứng minh CF vuông góc với AC.
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...
Bài 1:Cho tam giác ABC(AB<AC) hai đường cao BE và CF gặp nhau tại H,các đường thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh:
a) tam giác ABE đồng dạng tam giác ACF
b) AE . CB= AC . EF
c) Gọi I là trung điểm của BC. Chứng minh H,I,D thẳng hàng
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
Cho tam gác abc có góc a=75 độ, góc c=35 độ, m là trung điểm của bc. đường thẳng đi qua m và vuông góc với phân giác của góc a cắt ab, ac lần lượt tại e và f
a/ chứng minh rằng: be=cf
b/ đường thẳng qua e song song với bc và đường thẳng qua c song song với ba cắt nhau tại j. chứng minh cfj là tam giác cân. từ đó, so sánh bc và ef
c/ tia phân giác ngoài của góc a của tam giác abc cắt đường thẳng bc tại i. Gọi n là điểm thuộc bi sao cho bn=ab. chứng minh: ni=ac
Cho tam giác A,B,C vuông tại A.BE là tia phân giác của góc ABC (E thuộc AC).Kẻ EI vuông góc với BC(I thuộc BC)
a)chứng minh tam giác ABE=tam giác IBE
b)Tia IE và tia BA cắt nhau tại M .Chứng minh tam giác EMC cân
c)Chứng minh AI song song MC
Toán hình 7
a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó:ΔABE=ΔIBE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó;ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại E
c: Xét ΔBMC có BA/AM=BI/IC
nên AI//MC