cho a/b=c/d CMR 2a+b/3a-b=2c+d/3c-a
Cho a/b=c/d
CMR:,2a-5b/3a=2c-5d/3c
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}.\)
\(\Rightarrow\frac{a}{c}=\frac{2a-5b}{2c-5d}=\frac{3a}{3c}\Rightarrow\frac{2a-5b}{3a}=\frac{2c-5d}{3c}\)
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
a) đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=b.k;c=d.k\)
\(\frac{3a+2c}{3b+2d}=\frac{3b.k+2.d.k}{3b+2d}=\frac{k\left(3b+2d\right)}{3b+2d}=k\)
b) bó tay
Cho\(\frac{3a+5b}{2a-b}=\frac{3c+5d}{2c-d}CMR\frac{a}{b}=\frac{c}{d}\)
\(\frac{3a+5b}{2a-b}=\frac{3c+5d}{2c-d}\)
<=>\(\left(3a+5b\right)\left(2a-b\right)=\left(3c+5d\right)\left(2c-d\right)\)
<=>\(6ac+10ad-3bc-5bd=6ac+10bc-3ad-5bd\)
<=>\(10ad-3bc=10bc-3ad\)
<=>\(10ad-3bc-10bc+3ad=0\)
<=>\(13ad-13ac=0\)
<=>\(13ad=13ac\)
<=>\(ad=bc\)
<=>\(\frac{a}{b}=\frac{c}{d}\)(đpcm)
Cho\(\frac{3a+5b}{2a-b}=\frac{3c+5d}{2c-d}CMR\frac{a}{b}=\frac{c}{d}\)
Ta có: \(\frac{3a+5b}{2a-b}=\frac{3c+5d}{2c-d}\)
=> (3a+5b)(2c-d) =(2a-b)(3c+5d)
=> 3a(2c-d) +5b(2c-d) =2a(3c+5d) -b(3c+5d)
=> 6ac -3ad +10bc -5bd =6ac +10ad -3bc -5bd
=>7bc=7ad
=> bc=ad
=> a/b =c/d
Cho a,b,c khác 0 và a/b=c/d
CMR 2a-5b/3a=2c-5d/3c
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\)
\(\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{2a-5b}{2c-5d}\Rightarrow\frac{2a-5b}{3a}=\frac{2c-5d}{3c}\left(dpcm\right)\)