tìm cặp số nguyên x,y biết (x-2)^2+(y+1)^2=0
Tìm cặp số nguyên x,y biết : |x2-y| - 8|y2-1|=0
Tìm các cặp số nguyên x, y biết:
x*y + 2*x + 2*y = 0
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
Tìm cặp số nguyên (x; y) (y < 0) biết |x2 - 1| + (y2 - 3)2 = 2
Tìm các cặp số nguyên x,y biết: 2x2y-x2-2y-2=0
Tìm tất cả các cặp số nguyên (x,y) biết: \(\)x2 - x(y - 1) + y + 3 = 0
Coi phương trình trên là pt bậc 2 ẩn x tham số y
Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)
\(=y^2-2y+1-4y-12\)
\(=y^2-6y-11\)
Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)
Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương
Đặt \(\Delta=k^2\left(k\inℕ\right)\)
\(\Leftrightarrow y^2-6y-11=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)
\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)
Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên
Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)
Tìm cặp số nguyên ( x ; y ) biết :
a) ( x - 1 )( y + 2) = 7
b) xy - 3x - y = 0
\(\left(x+1\right)\left(y+2\right)=7\)
TH1 : \(\hept{\begin{cases}x+1=1\\y+2=7\end{cases}=>\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+1=7\\y+2=1\end{cases}=>\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
mk giải nhé
a) x-1 1 7
y+2 7 1
x 2 8
y 5
vậy ( x;y) = ( 2;5)
a) Ta có:
x-1 | -7 | -1 | 1 | 7 |
y+2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Ta có các cặp số nguyên ( x;y ) = ( -6;-3 ) ; ( 0;-9 ) ; ( 2;5 ) ; ( 8;-1 )
b) xy - 3x - y = 0
x( y- 3 ) - ( y - 3 )= 3
( y - 3 ) ( x - 1) = 3
Ta có:
x-1 | -3 | -1 | 1 | 3 |
y-3 | -1 | -3 | 3 | 1 |
x | -2 | 0 | 2 | 4 |
y | 2 | 0 | 6 | 4 |
Ta có các cặp số nguyên ( x;y ) = ( -2;2 ) ; ( 0;0 ) ; ( 2;6 ) ; ( 4;4 )
Tìm các cặp số nguyên x;y biết:
2x2y-x2-2y-2=0