Timg GTLN của Q=\(\frac{2x^2-12x-5}{x^2-2x+1}\)
Timg GTNN, GTLN của hàm số:
a) y= 4sin2 x + \(\sqrt{2}\) sin (\(2x+\frac{\pi}{4}\))
b) y= cos x ( 1+cos 2x)
c) y= sin2 x. cos x +cos2 x.sin x
Tìm GTLN,GTNN của biểu thức: \(\frac{2x^2+12x}{x^2+2x+3}\)
-timg gtln của C=\(\frac{1}{\sqrt{x^2-4x+5}}\)
-tìm gtln của B=5-\(\sqrt{x^2-6x+14^{ }}\)
Có: \(C=\frac{1}{\sqrt{x^2-4x+5}}\)
\(\Leftrightarrow C=\frac{1}{\sqrt{\left(x-2\right)^2+1}}\)\(\le1\)
Vậy Cmin=1 \(\Leftrightarrow x=2\)
Có: \(B=5-\sqrt{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt{\left(x-3\right)^2+5}\) \(\le5-\sqrt{5}\)
Vậy \(B_{min}=5-\sqrt{5}\Leftrightarrow x=3\)
Tìm GTLN của các biểu thức sau:
a) \(A=\frac{4x^2-12x+15}{x^2-3x+3}\)
b)\(B=\frac{4x^2-8x+12}{x^2-2x+5}\)
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
bài 25
timg giá trị nhỏ nhất của biểu thức
\(A=2x^2-6x+7\)
\(B=\frac{2x^2-6x+5}{x^2-2x+1}\)
1,\(A=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" khi \(x=\frac{3}{2}\)
2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)
\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1)
*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)
*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)
\(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)
\(\Leftrightarrow B\ge1\)
Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)
\(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)
Thấy 1 < 2 nên BMin = 1<=> x = 2
Vậy ....
A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1
Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0
Nên:A\(\ge\) -1
B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\) -3
Tìm GTLN của các biểu thức sau:
a) \(A=\frac{4x^2-12x+15}{x^2-3x+3}\)
b)\(B=\frac{4x^2-8x+12}{x^2-2x+5}\)
1) Tìm GTLN và GTNN:
a) A=\(\frac{27-12x}{x^2+9}\)
b) B=\(\frac{8x+3}{4x^2+1}\)
c) C=\(\frac{2x+1}{x^2+2}\)
d) D=\(\frac{3x^2-2x+3}{x^2+1}\)
1 tìm GTLN của phân thức
A=\(\frac{7}{2x^2-6x+100}\)
tìm GTLN của
B= \(\frac{-200}{4x^2+12x+23}\)
Ta có: A=\(\frac{7}{2x^2-6x+100}=\frac{7}{2x^2-6x+4.5+95.5}\)
=\(\frac{7}{2\left(x^2-3x+2.25\right)+95.5}=\frac{7}{2\left(x-1.5\right)^2+95.5}\)
Ta có: Để phân số \(\frac{7}{2\left(x-1.5\right)^2+95.5}\)lớn nhất <=> \(2\left(x-1.5\right)^2+95.5\)nhỏ nhất
Ta có: 2(x-1.5)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> \(2\left(x-1.5\right)^2+95.5\)lớn hơn hoặc bằng 95.5 với mọi x thuộc R
Dấu"=" xảy ra khi \(2\left(x-1.5\right)^2+95.5\)=95.5
<=> 2(x-1.5)^2=0
<=> x-1.5=0
<=> x=1.5
Vậy GTLN của biểu thức A là A=\(\frac{7}{95.5}=\frac{14}{191}\)tại x=1.5
Câu b tương tự
Cho P=\(\frac{4x^2-12x+18}{2x-3}\) .A)Với x>\(\frac{3}{2}\) tìm GTNN CỦA P
B)Với x<1.tìm GTLN CỦA P