Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Bui Thi Thu Phuong
Xem chi tiết
Anh Lê
Xem chi tiết
Ami Mizuno
14 tháng 9 2020 lúc 21:09

Có: \(C=\frac{1}{\sqrt{x^2-4x+5}}\)

\(\Leftrightarrow C=\frac{1}{\sqrt{\left(x-2\right)^2+1}}\)\(\le1\)

Vậy Cmin=1 \(\Leftrightarrow x=2\)

Có: \(B=5-\sqrt{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt{\left(x-3\right)^2+5}\) \(\le5-\sqrt{5}\)

Vậy \(B_{min}=5-\sqrt{5}\Leftrightarrow x=3\)

Hoàng Mai Trang
Xem chi tiết
Con Chim 7 Màu
10 tháng 2 2019 lúc 16:42

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

thảo vy
Xem chi tiết
Incursion_03
12 tháng 2 2019 lúc 18:19

1,\(A=2x^2-6x+7\)

   \(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)

   \(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" khi \(x=\frac{3}{2}\)

2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)

\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1) 

*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)

                                \(\Leftrightarrow2x-3=0\)

                                \(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)

*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B

Pt (1) có nghiệm khi \(\Delta\ge0\)

                          \(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)

                           \(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)

                           \(\Leftrightarrow B\ge1\)

Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)

                                        \(\Leftrightarrow-\left(x-2\right)^2=0\)

                                        \(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)

Thấy 1 < 2 nên BMin = 1<=> x = 2

Vậy ....

Lê Hồ Trọng Tín
12 tháng 2 2019 lúc 18:32

A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1

Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0

Nên:A\(\ge\) -1

B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\)  -3

Hoàng Mai Trang
Xem chi tiết
Đặng Minh Tâm
Xem chi tiết
Nguyễn Quang Tùng
Xem chi tiết
Phạm Tuấn Tài
11 tháng 12 2016 lúc 7:38

Ta có: A=\(\frac{7}{2x^2-6x+100}=\frac{7}{2x^2-6x+4.5+95.5}\)

              =\(\frac{7}{2\left(x^2-3x+2.25\right)+95.5}=\frac{7}{2\left(x-1.5\right)^2+95.5}\)

              Ta có: Để phân số  \(\frac{7}{2\left(x-1.5\right)^2+95.5}\)lớn nhất <=> \(2\left(x-1.5\right)^2+95.5\)nhỏ nhất
Ta có: 2(x-1.5)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> \(2\left(x-1.5\right)^2+95.5\)lớn hơn hoặc bằng 95.5 với mọi x thuộc R
Dấu"=" xảy ra khi \(2\left(x-1.5\right)^2+95.5\)=95.5
<=>  2(x-1.5)^2=0
<=>  x-1.5=0
<=> x=1.5
Vậy GTLN của biểu thức A là A=\(\frac{7}{95.5}=\frac{14}{191}\)tại x=1.5
Câu b tương tự

hoclagipi88888
Xem chi tiết