cho a,b thuộc n và 3a+4b chia hết cho 11, chứng minh a+5b chia hết cho 11
Cho a,b thuộc N. Chứng minh
a, a+4b chia hết cho 13<=>10m+n chia hết cho 13
b, 3a+4b chia hết cho 11<=> a+5b chia hết cho 11
Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
\(\Rightarrow\left(a+5b\right)+\left(11a+11b\right)⋮11\)
\(\Rightarrow\left(a+5b\right)+11.\left(a+b\right)⋮11\)
\(\Rightarrow a+5b⋮11\)
Cho a,b thuộc N. Chứng minh
a, a+4b chia hết cho 13<=>10m+n chia hết cho 13
b, 3a+4b chia hết cho 11<=> a+5b chia hết cho 11
Mình đang cần gấp . Giúp mình nhé :
Cho biết a ,b thuộc N . Chứng minh rằng : (3a + 4b) chia hết cho 11 (=) (a+5b) chia hết cho 11
Cho a b thuộc N CMR (3a+4b) chia hết cho 11 (=) (a+5b) chia hết cho 11
3a + 4b = 3a + 15b -11b = 3(a+5b) - 11b
vì a+5b chia hết 11 rùi
11b chia hết 11
=> 3a + 4b chia hết 11
a,b thuộc Z
chứng minh 3a + 4b chia hết cho 11 thì a + 5b chia hết cho 11
ghi cả cách làm nha bạn
\(3a+4b\) chia hết cho 11
\(\Leftrightarrow3a+4b+11b\) chia hết cho 11 (vì 11b chia hết cho 11)
\(\Leftrightarrow3a+15b\) chia hết cho 11
\(\Leftrightarrow3\left(a+5b\right)\) chia hết cho 11
Mà (3;11)=1
=>a+5b chia hết cho 11
=>đpcm
Cho các số nguyên a , b , c. Chứng minh rằng : Nếu 3a + 4b + 5c chia hết cho 11 thì 12a + 5b - 2c cũng chia hết cho 11
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chép ở đâu z bạn o0o đồ khùng o0o
tớ bít nè chắc ở SKTS_BFON
chép nhận tk đúng ko
Cho các số nguyên a, b, c. Chứng minh rằng : Nếu 3a + 4b + 5c chia hết cho 11 thì 12a + 5b - 2c cũng chia hết cho 11
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chúc năm mới hạnh phúc. k nha.
Cho a và b là các số nguyên.Chứng minh rằng
a) Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
b) Nếu 3a+4b chia hết cho 11 thì a+5b chia hêt cho 11
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
Cho a,b \(\in\)Z
Chứng minh rằng nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11
Đặt A = 3a + 4b
B = a + 5b
=> 3B - A = 3.(a + 5b) - (3a + 4b)
3B - A = (3a + 15b) - (3a + 4b)
3B - A = 11b chia hết cho11
Đặt A = 3a + 4b
Và B = a + 5b
=> 3B - A = 3.(a + 5b) - (3a + 4b)
=> 3B - A = (3a + 15b) - (3a + 4b)
=> 3B - A = 11b chia hết cho 11
=> 3B - A chia hết cho 11
Mầ đầu bài đã cho A chia hết cho 11
=> 3B chia hết cho 11
Vậy B = a + 5b sẽ chia hết cho 11