lấy ví dụ về chứng minh 3 điểm thẳng hàng theo đường trung trực
Lấy ví dụ về chứng minh 3 điểm thẳng hàng theo cách đường trung trực.
cho góc xoy trên cạnh õ lấy 2 điểm A B trên cạnh oy lấy 2 điểm C và D sao cho oa=ob oc=od gọi M N theo thứ tự là đường trung trực của AB
a) chứng minh đường trung trực của AB
b) chứng minh 3 điểm o,m,n thẳng hàng
cho góc xOy. Trên cạnh Ox lấy hai điểm A và C. Trên cạnh Oy lấy hai điểm B và D sao cho OA=OB; OC=OD. Gọi M, N theo thứ tự là trung điểm của AB và CD
a) Chứng minh đường thẳng OM là đường trung trực của AB
b) Chứng minh ba điểm O, M, N thẳng hàng
xin lỗi bạn mình mệt quá từ nảy bấm muốn rụng hai cái tay luôn
bấm có mấy chữ mà muốn rụng tay gì chứ
Cho góc xOy. Trên cạnh Ox lấy điểm B và C. Trên cạnh Oy lấy hai điểm D và E sao cho OB = OD, OC = OE. Gọi M,N theo thứ tự là trung điểm của BD và CE.
a) Chứng minh đường thẳng OM là trung trực của BD.
b) Chứng minh ba điểm O, M, N thẳng hàng.
cho ba điểm O,A,B thẳng hàng theo thứ tự đó. Trên đường trung trực của OA lấy điểm D sao cho DA=AB. Tia phân giác của góc DOA cắt BD tại E
a) Chứng minh OE=EB
b) Chứng minh E thuộc đường trung trực của DA
c) So sánh ED và EB
GIÚP MÌNH VỚI Ạ
\(Bài 3. (6đ) Cho tam giác ABC có ; AB < AC ; phân giác BE, . Lấy điểm H thuộc cạnh BC sao cho BH = BA. a) Chứng minh . b) Chứng minh BE là đường trung trực của AH. c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC. d) Chứng minh AH // KC. e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng. \)
a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !
CMR : \(\Delta ABE=\Delta HBE\)
Xét \(\Delta ABE,\Delta HBE\) có :
\(BA=BH\left(gt\right)\)
\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )
\(BE:chung\)
=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)
b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)
Xét \(\Delta ABO,\Delta HBO\) có :
\(AB=BH\left(gt\right)\)
\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))
AO : Chung
=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)
Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)
=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)
=> \(BO\perp AH\)
Hay : \(BE\perp AH\)
c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)
Suy ra : \(EK=EC\) (2 cạnh tương ứng)
d) Xét \(\Delta ABC\) có :
BE là tia phân giác của \(\widehat{ABC}\) (1)
Xét \(\Delta KEM,\Delta CEM\) có :
\(EK=EC\left(cmt\right)\)
\(EM:chung\)
\(KM=CM\) (M là trung điểm của KC)
=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)
=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)
=> EM là tia phân giác của \(\widehat{KEC}\) (2)
Từ (1) và (2) => \(BE\equiv ME\)
=> B, E, M thẳng hàng
=> đpcm.
tam giác ABC cân tại A gọi AM vuông góc với BC a)Chứng minh rằng M là đường trung trực của đoạn BC
b) Về phía ngoài tam giác ABC lấy điểm D sao cho DB = BC chứng minh A,M,d mặt thẳng hànga: ΔABC cân tại A
mà AM là đường cao
nên AM là trung trực của BC(1)
b: DB=DC
nên D nằm trên trung trực của BC(2)
(1), (2) =>A,M,D thẳng hàng
Hãy giúp mik nha< chỉ giùm mik các cách chứng minh 3 điểm thẳng hàng . cho ví dụ là chứng minh A,B,C thẳng hàng
1. chứng minh góc ABC là góc bẹt
2. chứng minh đoạn AB hoặc AC cùng song song vs 1 đoạn thẳng
chứng minh là đường cao nè
chứng minh là góc bẹt nè
Cảm ơn mấy bạn
Chứng minh rằng trong 1 tam giác, trọng tâm, trực tâm, giao điểm 3 đường trung trực và giao điểm 3 đường phân giác thẳng hàng.