Lấy ví dụ về chứng minh 3 điểm thẳng hàng theo cách đường trung trực.
lấy ví dụ về chứng minh 3 điểm thẳng hàng theo đường trung trực
AB = CM (gt) DB = DC (D là trung điểm của BC) => ?ABD = ?MCD (2 cạnh góc vuông) => Mặt khác : (B, D, C thẳng hàng) => Hay : => A, D, M thẳng hàng ( góc bẹt) Nhận xét: Ở bài này chứng minh 3 điểm thẳng hàng bằng cách chứng minh cho góc tạo bởi 3 điểm đó là 180 độ.
cho góc xoy trên cạnh õ lấy 2 điểm A B trên cạnh oy lấy 2 điểm C và D sao cho oa=ob oc=od gọi M N theo thứ tự là đường trung trực của AB
a) chứng minh đường trung trực của AB
b) chứng minh 3 điểm o,m,n thẳng hàng
Hãy giúp mik nha< chỉ giùm mik các cách chứng minh 3 điểm thẳng hàng . cho ví dụ là chứng minh A,B,C thẳng hàng
1. chứng minh góc ABC là góc bẹt
2. chứng minh đoạn AB hoặc AC cùng song song vs 1 đoạn thẳng
chứng minh là đường cao nè
chứng minh là góc bẹt nè
Cảm ơn mấy bạn
cho góc xOy. Trên cạnh Ox lấy hai điểm A và C. Trên cạnh Oy lấy hai điểm B và D sao cho OA=OB; OC=OD. Gọi M, N theo thứ tự là trung điểm của AB và CD
a) Chứng minh đường thẳng OM là đường trung trực của AB
b) Chứng minh ba điểm O, M, N thẳng hàng
xin lỗi bạn mình mệt quá từ nảy bấm muốn rụng hai cái tay luôn
bấm có mấy chữ mà muốn rụng tay gì chứ
cách vẽ 3 đường trung trực của tam giác.Cho ví dụ.
cách vẽ 3 đường trung tuyến của tam giác.Cho ví dụ.
cách vẽ 3 đường phân giác của tam giác.Cho ví dụ.
cách vẽ 3 đường cao của tam giác.Cho ví dụ.
Cho góc xOy. Trên cạnh Ox lấy điểm B và C. Trên cạnh Oy lấy hai điểm D và E sao cho OB = OD, OC = OE. Gọi M,N theo thứ tự là trung điểm của BD và CE.
a) Chứng minh đường thẳng OM là trung trực của BD.
b) Chứng minh ba điểm O, M, N thẳng hàng.
cho ba điểm O,A,B thẳng hàng theo thứ tự đó. Trên đường trung trực của OA lấy điểm D sao cho DA=AB. Tia phân giác của góc DOA cắt BD tại E
a) Chứng minh OE=EB
b) Chứng minh E thuộc đường trung trực của DA
c) So sánh ED và EB
GIÚP MÌNH VỚI Ạ
\(Bài 3. (6đ) Cho tam giác ABC có ; AB < AC ; phân giác BE, . Lấy điểm H thuộc cạnh BC sao cho BH = BA. a) Chứng minh . b) Chứng minh BE là đường trung trực của AH. c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC. d) Chứng minh AH // KC. e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng. \)
a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !
CMR : \(\Delta ABE=\Delta HBE\)
Xét \(\Delta ABE,\Delta HBE\) có :
\(BA=BH\left(gt\right)\)
\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )
\(BE:chung\)
=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)
b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)
Xét \(\Delta ABO,\Delta HBO\) có :
\(AB=BH\left(gt\right)\)
\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))
AO : Chung
=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)
Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)
=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)
=> \(BO\perp AH\)
Hay : \(BE\perp AH\)
c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)
Suy ra : \(EK=EC\) (2 cạnh tương ứng)
d) Xét \(\Delta ABC\) có :
BE là tia phân giác của \(\widehat{ABC}\) (1)
Xét \(\Delta KEM,\Delta CEM\) có :
\(EK=EC\left(cmt\right)\)
\(EM:chung\)
\(KM=CM\) (M là trung điểm của KC)
=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)
=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)
=> EM là tia phân giác của \(\widehat{KEC}\) (2)
Từ (1) và (2) => \(BE\equiv ME\)
=> B, E, M thẳng hàng
=> đpcm.
tam giác ABC cân tại A gọi AM vuông góc với BC a)Chứng minh rằng M là đường trung trực của đoạn BC
b) Về phía ngoài tam giác ABC lấy điểm D sao cho DB = BC chứng minh A,M,d mặt thẳng hànga: ΔABC cân tại A
mà AM là đường cao
nên AM là trung trực của BC(1)
b: DB=DC
nên D nằm trên trung trực của BC(2)
(1), (2) =>A,M,D thẳng hàng