Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thái Tuấn ttv
Xem chi tiết
doremon
25 tháng 5 2015 lúc 14:27

Gỉa sử a >= b không làm mất đi tính tổng quát của bài toán.

=> a = m + b (m >=0)

Ta có: 

\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}=1+\frac{m}{b}+\frac{b}{b+m}\)

\(\le\) \(1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy a/b + b/a \(\le\)2 (ĐPCM)

Cho **** nha

Nguyễn Thái Tuấn ttv
25 tháng 5 2015 lúc 14:36

sai rùi ffffffffg ơi nhìn đề đi 

Nguyễn Hoàng Liên
11 tháng 6 2016 lúc 14:36

a/b+b/a=(a^2+b^2)/ab

Mà (a-b)^2>=0 => a^2+b^2>=2ab => (a^2+b^2)/ab>=2 =>ĐPCM

Nguyễn Thị Tuyến
Xem chi tiết
Lightning Farron
14 tháng 12 2016 lúc 19:09

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

Đỗ Diệu Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2022 lúc 19:47

Bài 2: 

a: Số đối của a-b là -(a-b)=-a+b=b-a

b: (a-b)(b-a)=-(a-b)2<0

Trần Quang Khải
Xem chi tiết
Nguyễn Thị Phương Anh
15 tháng 12 2021 lúc 16:33

b) a(a+1)(a+2)

+) Giả sử a là số lẻ

=> a+1 là số chẵn và chia hết cho 2 => a(a+1)(a+2) chia hết cho 2

+) Giả sử a là số chẵn

=> a chia hết cho 2 => a(a+1)(a+2) chia hết cho 2

Vậy a(a+1)(a+2) chia hết cho 2 với mọi a thuộc N     (1)

+) Giả sử a không chia hết cho 3 nên a chia 3 dư 1 hoặc dư 2

Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3

Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3

Vậy a(a+1)(a+2) chia hết cho 3 với mọi a thuộc N       (2)

Từ (1) và (2) => a(a+1)(a+2) chia hết cho  2 và 3 với mọi a thuộc N

_HT_

Khách vãng lai đã xóa
Nguyễn Thị Phương Anh
15 tháng 12 2021 lúc 16:43

a) 1980a - 1995b

Ta có: 1980a luôn có chữ số tận cùng là 0 vì 0 nhân với số nào cũng đều có chữ số tận cùng là 0

 1995b sẽ có chữ số tận cùng là 0 nếu b là số chẵn và ngược lại, 1995b sẽ có chữ số tận cùng là 5 nếu b là số lẻ

Từ đó => 1980a-1995b có tận cùng là : 0-5 = 5 hoặc 0-0= 0

Mà số có chữ số tận cùng là 0 hoặc 5 thì đều chia hết cho 5

Vậy 1980a-1995b chia hết cho 5 với mọi a,b thuộc N     (1)

Ta có:  1980 chia hết cho 3 => 1980a cũng chia hết cho 3 với mọi a

             1995 chia hết cho 3 => 1995b cũng chia hết cho 3 với mọi b

Vậy 1980a-1995b chia hết cho 3 với mọi a,b thuộc N      (2)

Từ (1) và (2) => 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N

=> ĐPCM

_HT_

Khách vãng lai đã xóa
Quách Trần Gia Lạc
Xem chi tiết
TNA Atula
9 tháng 2 2018 lúc 20:08

a2+b2+3-2a-2b-2c≥0

=> (a2-2a+1)+(b2-2b+1)+(c2-2c+1)≥0

=> (a-1)2+(b-1)2+(c-1)2≥0 ( luon dung )

Nguyễn Minh Hà
Xem chi tiết
M Trangminsu
Xem chi tiết
Nguyễn Huế Anh
14 tháng 9 2017 lúc 19:51

Biến đổi vế phải:

(a3+b3)(a2+b2)-(a+b)=(a5+b5)+(a3b2+a2b3)-(a+b)=a5+b5+a2b2(a+b)-(a+b)

Thay ab=1 vào ta được:

a5+b5+(a+b)-(a+b)=a5+b5

Sau khi biến đổi ta thấy vế phải bằng vế trái.Vậy đẳng thức đã được chứng minh

lê tũn
Xem chi tiết
Trần Việt Linh
25 tháng 7 2016 lúc 10:08

Có VT:(a+b)(a-b)=a^2-ab+ab-b^2=a^2-b^2 (với mọi a,b thuộc N,a>b)

Vậy đẳng thức trên được chứng minh

•  Zero  ✰  •
Xem chi tiết
I - Vy Nguyễn
30 tháng 3 2020 lúc 16:54

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{a^2-ab-ab+b^2}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\) với mọi \(a;b\inℕ^∗\) 

Khách vãng lai đã xóa

Ta có\(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\text{ với mọi a;b \inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\text{ với mọi a;b\inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\text{ với mọi a;b \inℕ^∗}\)

Học tốt

Khách vãng lai đã xóa