Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản.
Mọi người ai trả lời giúp mình với ! @_@
Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Quách Dương Hà Anh mình ch bt là bạn giải đúng hay sai nhưng nếu giải thích là số lẻ/ số chẵn là phân số tối giản thì sai nhé.
VD: 3/12 = 1/4.
Phải giải thích là 23 là số nguyên tố => 23 chỉ chia hết cho chính nó và 1.
Mà 23 và 1 là số lẻ, còn 2n(n+2) là số chẵn nên 23 không chia hết cho 2n(n+2) =>....
Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên n
a) n + 1 2 n + 1
b) 2 n + 3 4 n + 8
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
chứng minh phân số 21n+2/12n+1 là phân số tối giản với mọi số tự nhiên n
Chứng minh rằng phân số 2n+1/4n2+1 là phân số tối giản với mọi số tự nhiên n
Gọi UWCLN(2n+1;4n2+1) = d : (n thuộc N)
Suy ra : 2n + 1 chia hết cho d , do đó 2n(2n+1)chia hết cho d
hay 4n2 + 2n chia hết cho d
Áp dụng tính chất chia hết của 1 hiệu
4n2 + 2n - (2n + 1) chia hết cho d
Theo bài ra 4n2 + 1 chia hết cho d . Áp dụng tính chất chia hết của 1 hiệu , ta được
4n2 - 1 - (4n2 -1) chia hết cho d
4n2 - 4n2 + 1 chia hết cho d
2 chia hết cho d
Suy ra : d = {1;2}
Vì 2n + 1 và 4n2 + 1 là các số lẻ nên d=1
Vậy 2n+1 là các số tối giản với mọi số tự nhiên n
Chứng minh phân thức 12 n + 1 30 n + 2 là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 12n + 1 và 30n + 2
⇒ (12n + 1)⋮ d và (30n + 2)⋮ d
⇒ [5(12n + 1) - 2(30n + 2)] ⋮ d
⇒ 1 ⋮ d, với ∀n ∈ N
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng minh phân số sau tối giản với mọi số tự nhiên n: \(\dfrac{12n+1}{30n+2}\)
Đặt \(d\) là \(\text{Ư}CLN\) \(\left(12n+1;30n+2\right)\)
Theo bài ra: \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\left(1\right)\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(5.\left(12n+1\right)-2.\left(30n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Mà phân số tối giản thì có \(\text{Ư}CLN\) của tử số và mẫu số là 1
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
Chứng minh rằng các phân số sau là phân số tối giản với mọi n là số tự nhiên:
a, 2n+1/2n+3
b, 14n2+17/21n2+25
c, 12n+1/30n+2
d, 3n3-2/4n3 -3
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath