Tìm x,y nguyên dương biết \(\frac{x+y}{x^2+y^2}=\frac{11}{65}\)
Tìm x,y nguyên dương biết :
\(\frac{x+y}{x^2+y^2}=\frac{11}{65}\)
Nhanh hộ mình , hạn chót 12h trưa nay
tìm x,y nguyên dương thỏa mãn
\(\frac{x+y}{x^2+y^2}=\frac{11}{65}\)
tìm các số nguyên dương x,y biết rằng x+y /x^2+y^2 =11/65
tìm các số nguyên dương x,y biết rằng x y /x^2 y^2 =11/65
\(\frac{xy}{x^2.y^2}=\frac{11}{65}\)
đề là như vầy hả bạn??
Ta có :
\(\frac{xy}{x^2.y^2}=\frac{11}{65}\Rightarrow\frac{1}{xy}=\frac{11}{65}\Rightarrow65=11.xy\)
=> x.y = 65/11 ( Do x,y nguyên dương =>xy cũng nguyên dương mà 65 không chia hết cho 11 => Dẫn đến Vô lí )
mk xin lỗi mk chép thiếu đề bài rùi phải là x+y/x^2 + y^2 nhé
tìm các số nguyên dương x,y biết rằng x+y /x^2+y^2 =11/65
a) Tìm số nguyên x, biết:
\(\frac{x}{9}=\frac{-12}{27}\)
b) Tìm số nguyên x, biết: 12 - ( x - 4 ) = 17
c) Tìm y biết: \(\left(1\frac{2}{3}+2\frac{2}{3}y\right).\frac{10}{11}=2\frac{3}{11}\)
a) Ta có: \(\frac{x}{9}=\frac{-12}{27}\)
=> \(27.x=-12.9\)
=> \(27x=-108\)
=> \(x=108:27\)
=>\(x=4\)
tìm 2 số nguyên dương x ; y biết : \(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{8}-\frac{1}{y}=\frac{1}{2}\)
\(\Leftrightarrow\frac{xy-8}{8y}=\frac{1}{2}\)
\(\Leftrightarrow2\left(xy-8\right)=8y\)
\(\Leftrightarrow2xy-16=8y\)
\(\Leftrightarrow2xy-8y=16\)
\(\Leftrightarrow2y\left(x-4\right)=16\)
\(\Leftrightarrow y\left(x-4\right)=8=1.8=8.1=\left(-1\right)\left(-8\right)=\left(-8\right)\left(-1\right)=2.4=4.2=\left(-2\right)\left(-4\right)=\left(-4\right)\left(-2\right)\)
Còn lại tự lập bảng nha!
Bài giải
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\frac{x}{8}-\frac{4}{8}=\frac{1}{y}\)
\(\frac{x-4}{8}=\frac{1}{y}\)
\(xy-4y=8\)
\(y\left(x-4\right)=8\)
\(\Rightarrow\text{ }y,\left(x-4\right)\inƯ\left(8\right)\)
Mà x ; y là số nguyên dương nên :
Ta có bảng :
x - 4 | 1 | 2 | 4 | 8 |
y | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(5\text{ ; }8\right)\text{ ; }\left(6\text{ ; }4\right)\text{ ; }\left(8\text{ ; }2\right)\text{ ; }\left(12\text{ ; }1\right)\)
Tìm các số nguyên dương x, y biết:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
Do x,y là các số nguyên dương nên \(\frac{1}{x}\ge1;\frac{1}{y}\ge1\Rightarrow\frac{1}{x}+\frac{1}{y}\ge2>\frac{1}{2}\)
nhầm xíu.thông cảm nha.để tớ làm lại=((
Lời giải
Vai trò của x;y là bình đẳng.Giả sử \(x\ge y>0\).
Hiển nhiên,ta có: \(\frac{1}{y}< \frac{1}{2}\Rightarrow y>2\)
Ta có: \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\Rightarrow y\le4\)
Kết hợp đk y nguyên dương suy ra \(3\le y\le4\)
Suy ra y = 3 hoặc y = 4
Với y = 4 thì x =4
Với y = 3 thì x = 6
Vậy \(\left(x;y\right)=\left\{\left(4;4\right),\left(3;6\right),\left(6;3\right)\right\}\)
Tìm x,y nguyên dương biết: \(\frac{X^2-1}{2}\)=\(\frac{y^2-1}{2}\)