tìm a có giá trị nguyên -a⋮a+3
A=\(\dfrac{4}{x-3}\)
a/ tìm số nguyên x sao cho A có giá trị là số chính phương
b/tìm số nguyên x sao cho A có giá trị là số nguyên tố
b)
Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó
\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)
Giải:
a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 4 |
x | 4 | 7 |
Vậy \(x\in\left\{4;7\right\}\)
b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\)
\(4⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta thấy:
Vì chỉ có mỗi 2 là số nguyên tố nên ta có:
x-3=2
x=5
A= 2n-1/n-3
a) Tìm số nguyên n để A có giá trị nguyên
b) Tìm số nguyên n để A có giá trị lớn nhất
Để A có giá trị nguyên thì 2n-1 chia hết cho n-3
2n-1
=2n-6+5
=2.(n-3)+5
Do 2.(n-3) luôn chia hết cho n-3 nên 5 chia hết cho n-3
n-3 thuộc 1;5;-1;-5
Bạn kẻ bảng ra và thử các trường hợp nhé,sau cùng ta được:
n thuộc 4;8;2;-2
b)Để A có giá trị nguyên lớn nhất thì n lớn nhất ở tử,bé nhất ở mẫu,Tức mẫu bằng 1,suy ra n=4,mẫu không âm được vì nếu âm hoặc cả 2 âm không mang lại giá trị lớn nhất
Cách tốt nhất thử các n ra rồi so sánh giá trị.
Chúc bạn học tốt^^
Để A nguyên thì
2n - 1 chia hết n - 3
<=> 2n - 6 + 5 chia hết n - 3
<=> 2.(n-3) + 5 chia hết n - 3
=> 5 chia hết n - 3
=> n - 3 thuộc Ư(5) = {-1;1;-5;5}
=> n = 2;4;-1;8
Để A nguyên thì
2n - 1 chia hết n - 3
<=> 2n - 6 + 5 chia hết n - 3
<=> 2.(n-3) + 5 chia hết n - 3
=> 5 chia hết n - 3
=> n - 3 thuộc Ư(5) = {-1;1;-5;5}
=> n = 2;4;-1;8
\(A=\frac{4}{x-3}\) Đk x khác 3
a tìm x nguyên sao cho A có giá trị là số chính phương
b/tìm x nguyên sao cho A có giá trị là số nguyên tố
c/tìm x nguyên sao cho A có giá trị là số âm
a) A=3-n / n+1 . Tìm các giá trị nguyên của n để A có giá trị nguyên
b) B=6n+5 / 3n+2 . Tìm các giá trị nguyên của n để B có giá trị nguyên
c) C=2n+1 / 3n+2 . Tìm các giá trị nguyên của n để C có giá trị nguyên
Ai nhanh, đúng mình sẽ tick
a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).
b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow n\in\left\{-1\right\}\)
c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra
.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)
Thử lại thỏa mãn.
Cho biểu thức A= \(\frac{3x^3-14x^2+3x+36}{3x^3-19x^2+33x-9}\)
a) tìm giá trị của x để A xác định
b) tìm giá trị của x để A có giá trị bằng 0
c) Tìm giá trị nguyên của x để A có giá trị nguyên
a) A=3-n / n+1 . Tìm các giá trị nguyên của n để A có giá trị nguyên
b) B=6n+5 / 3n+2 . Tìm các giá trị nguyên của n để B có giá trị nguyên
c) C=2n+1 / 3n+2 . Tìm các giá trị nguyên của n để C có giá trị nguyên
Mình đang cần gấp. Ai nhanh, đúng mình sẽ tick
Cho p/s A= 2n-1/n-3
A) tìm số nguyên n để A có giá trị nguyên
B) tìm số nguyên n để A có giá trị lớn nhất
a) \(A=\frac{2n-1}{n-3}=\frac{2\left(n-3\right)+5}{n-3}=2+\frac{5}{n-3}\)
Để A nguyên thì \(\frac{5}{n-3}\) phải nguyên
=> n-3 \(\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{4;2;8;-2\right\}\)
Cho phân số A=6n+1/4n+3(với n nguyên ) a, Tìm giá trị n nguyên âm để A có giá trị nguyên
QUÁ DỄ nhưng.......
tui quên rùi xin lỗi
Để A nguyên \(\Leftrightarrow6n+1⋮4n+3\)
\(\Leftrightarrow12n+2⋮4n+3\)
\(\Leftrightarrow12n+9-7⋮4n+3\)
\(\Leftrightarrow3.\left(4n+3\right)-7⋮4n+3\)
mà \(3.\left(4n+3\right)⋮4n+3\)
\(\Rightarrow7⋮4n+3\)
\(\Rightarrow4n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Bạn tự làm tiếp nhé
học tốt
Cho phân số A= 2n-1/ n-3
Tìm số nguyên n để A có giá trị nguyênTìm số nguyên n để A có giá trị lớn nhấtCho A = n+2 / n-3
a) tìm các số nguyên n để A có giá trị nguyên
b) tìm n thuộc Z để A có giá trị lớn nhất