Tìm GTLN(GTNN) của biểu thức:
A = 2(2x+3)^2+5
tìm GTLN và GTNN của biểu thức sau :
D= -(2x-3)2-3
E= (2x-5)2+(y+1/2)2+2022
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2
Tìm GTNN của biểu thức C= (x+1)^2 + (y-1/3)^2-10
Tìm GTLN của biểu thức D= 5/(2x-1)^2+3
Giúp em với ạ
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
Tìm GTNN, GTLN của biểu thức:
A=\(-\dfrac{1}{3}x^2+2x\)
Bài này chỉ tìm được GTLN thôi nhé bạn.
Ta thấy \(A=-\dfrac{1}{3}x^2+2x\)
\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)
\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)
\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)
Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a, Tìm GTLN của biểu thức \(A=\sqrt{3}-\left(x-2\right)^2\)
b, Tìm GTNN của biểu thức \(B=\left(2x-5\right)^2+2019\)
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
1) Tìm GTNN của biểu thức Q = x2 - 2x +7; P = 2x2- 3x + 4
2) Tìm GTLN của biểu thức A = -4x2 + 2x + 5; B = 3 - 2x . x+4
3) Tìm GTLN của biểu thức M = xy với x+5 = y
1. a) Tìm GTNN của biểu thức C = ( x + 2 )2 + ( y - 1/5)2 - 10
b) Tìm GTLN của biểu thức D =\(\frac{4}{\left(2x-3\right)^2+5}\)
a. (x+2)2 >= 0
(y-1/5)2 >= 0
=> MinC = -10 khi x = -2, y = 1/5
b. (2x-3)2 + 5 >= 5
D đạt max khi mẫu đạt min (Mẫu > 0)
=> MaxD = 4/5 khi x = 3/2
1) Tìm GTNN của biểu thức: \(A=\left|y-5\right|+\left|y+2012\right|\)
2) Tìm GTLN của biểu thức: \(N=-5-\left|2x-3\right|\)
1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)
Dấu "=" khi \(-2012\le x\le5\)
Vậy MinA=2007 khi \(-2012\le x\le5\)
2)Ta thấy:\(\left|2x-3\right|\ge0\)
\(\Rightarrow-\left|2x-3\right|\le0\)
\(\Rightarrow-5-\left|2x-3\right|\le-5\)
Dấu "=" khi \(x=\frac{3}{2}\)
Vậy MaxN=-5 khi \(x=\frac{3}{2}\)
Tìm GTNN và GTLN của biểu thức 3/ 2 + căn của 2x - x^2 + 3
Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath