Cho A= 1/2^2+ 1/3^2+ ...+ 1/20^2
C/m: A< 1
Bài 1:
a) (x-1/3)^2=0
b) (x-4)^2=16
c) (2x-1)^3= -8
Bài 2:
a) (-1/30)^0
b) (3 1/4)^2
c) (-1 3/4)^2
d) (3/7)^20 : (9/49)^6
e) 3^2.5^2 .(2/3)^2
\(1,\\ a,\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow\left[{}\begin{matrix}x-4=4\\x-4=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=0\end{matrix}\right.\\ c,\Leftrightarrow2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\\ 2,\\ a,=1\\ b,=\left(\dfrac{13}{4}\right)^2=\dfrac{169}{16}\\ c,=\left(-\dfrac{7}{4}\right)^2=\dfrac{49}{16}\\ d,=\left(\dfrac{3}{7}\right)^{20}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^8=...\\ e,=\left(3\cdot5\cdot\dfrac{2}{3}\right)^2=10^2=100\)
cho a,b,c > 0, abc=1. C/m 1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3) <= 1/2
+) chứng minh 1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1=1
<=> abc/ab+b+abc + abc/bc+c+abc + 1/ac+a+1
<=> ac/ac+a+1 + ab/b+1+ab + 1/ac+a+1
<=> ac+a+1/ac+a+1
<=> 1
+) xét: a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 >= 2ab+2b+2<=1/2(ab+b+1) (1)
chứng minh tương tự:1/ b^2+2c^2+3 <= 1/2(bc+c+1) (2)
1/ c^2+2a^2+3 <= 1/2(ac+a+1) (3)
cộng các vế của (1),(2),(3) ta duoc: 1/(a^2+2b^2+3) + 1/(b^2+2c^2+3) + 1/(c62+2a^2+3) <= 1/2.(1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1)=1/2 (đpcm)
mình làm rồi, bạn vào đây tham khảo nha: http://olm.vn/hoi-dap/question/559729.html
Cho 3 số dương a,b,c thỏa mãn điều kiện : \(a+b+c=\frac{1}{abc}\)
CMR:\(\sqrt{\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=a+b\)
\(a+b+c=\frac{1}{abc}\)
\(\Leftrightarrow abc\left(a+b+c\right)=1\)(*)
\(\Leftrightarrow a^2bc+ab^2c+abc^2=1\)
Ta có :
\(1+b^2c^2=a^2bc+ab^2c+abc^2+b^2c^2\)
\(=abc\left(a+b\right)+bc^2\left(a+b\right)\)
\(=bc\left(a+b\right)\left(a+c\right)\)
Tương tự ta cũng có \(1+a^2c^2=ac\left(a+b\right)\left(b+c\right)\)
Khi đó : \(\left(1+b^2c^2\right)\left(1+a^2c^2\right)=abc^2\left(a+b\right)^2\left(b+c\right)\left(a+c\right)\)(1)
Xét \(c^2+a^2b^2c^2\)
\(=a^2b^2c^2+\frac{abc^3}{abc}\)
\(=a^2b^2c^2+abc^3\left(a+b+c\right)\)( theo giả thiết )
\(=a^2b^2c^2+a^2bc^3+ab^2c^3+abc^4\)
\(=abc^2\left(ab+bc+ca+c^2\right)\)
\(=abc^2\left(b+c\right)\left(a+c\right)\)(2)
Từ (1) và (2) ta suy ra :
\(\sqrt{\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=\sqrt{\frac{abc^2\left(a+b\right)^2\left(b+c\right)\left(a+c\right)}{abc^2\left(b+c\right)\left(a+c\right)}}\)
\(=\sqrt{\left(a+b\right)^2}=\left|a+b\right|=a+b\)( vì \(a,b\in Z^+\) )
Ta có đpcm.
Cho a,b,c là các số thực dương thỏa 1/a^2 + 1/b^2 + 1/c^2 = 1/3 C/m 1/2a^2 + b^2 +1/2b^2 + c^2 + 1/2c^2+a^2 <= 1/9
Cho a,b,c là các số thực dương thỏa 1/a^2 + 1/b^2 + 1/c^2 = 1/3 C/m 1/2a^2 + b^2 +1/2b^2 + c^2 + 1/2c^2+a^2 <= 1/9
cho 3 so duong a,b,c thoa man a+b+c=1/abc chung minh rang can ((1+b^2c^2)(1+a^2c^2)/c^2+a^2b^2c^2)=a+b
a) 15 : (x + 2) = 3 b) 20 : (1 + x) = 2
c) 240 : (x – 5) = 22.52 – 20 d) 96 - 3(x + 1) = 42
a, \(15:\left(x+2\right)=3\Leftrightarrow x+2=3\Leftrightarrow x=1\)
b, \(20:\left(x+1\right)=2\Leftrightarrow x+1=10\Leftrightarrow x=9\)
c, \(240:\left(x-5\right)=2^2.5^2-20=80\Leftrightarrow x-5=3\Leftrightarrow x=8\)
d, \(96-3\left(x+1\right)=42\Leftrightarrow3\left(x+1\right)=54\Leftrightarrow x+1=18\Leftrightarrow x=17\)
a) 15 : (x + 2) = 3
x + 2 = 15 : 3
x + 2 = 5
x = 5 – 2 = 3
b) 20 : (1 + x) = 2
1 + x = 20 : 2
1 + x = 10
x = 10 – 1 = 9
c) 240 : (x – 5) = 22.52 – 20
240 : (x – 5) = 4.25 – 20
240 : (x - 5) = 100 – 20
240 : (x - 5) = 80
x – 5 = 240 : 80
x – 5 = 3
x = 3 + 5 = 8
d) 96 - 3(x + 1) = 42
3(x + 1) = 96 – 42
3(x + 1) = 54
x + 1 = 54 : 3
x + 1 = 18
x = 18 – 1
x = 17
\(15\div\left(x+2\right)=3\) \(20\div\left(1+x\right)=2\)
\(x+2=15\div3\) \(1+x=20\div2\)
\(x+2=5\) 1+x=10
x = 5 - 2 x=9
x = 3
\(240\div\left(x-5\right)=2^2\cdot5^2-20\) \(96-3\left(x+1\right)=42\)
\(240\div\left(x-5\right)=80\) \(3\left(x+1\right)=96-42\)
\(x-5=240\div80\) \(3\left(x+1\right)=54\)
x-5=3 \(x+1=54\div3\)
x=8 x+1=18
x=17
phân tích đa thức thành nhân tử
1)ab(a+b)-2bc(b-2c)-2ca(a-2c)-4abc
2)a^2b+2ab^2+4b^2c+4bc^2+2c^2a+ca^2+4abc
3)(x^2-6x+5)(x^2-10x+21)-20
4)4(x^2+x+1)^2+5x(x^2+x+1)+x^2
5)x^4+5x^3-12x^2+5x+1
6)(x+1)(x-4)(x+2)(x-8)+4x^2
7)4x^3+5x^2+10x-12
8)(x+3)^2(3x+8)(3x+10)-8
9)(4x+1)(12x-1)(3x+2)(x+1)-4
cho abc=1 tim GTLN M=\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
Áp dụng bđt cosi ta có:
\(M=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}=\frac{1}{a^2+b^2+b^2+1+2}+\frac{1}{b^2+c^2+c^2+1+2}+\frac{1}{c^2+a^2+a^2+1+2}\le\frac{1}{2\sqrt{ab}+2\sqrt{b}+2}+\frac{1}{2\sqrt{bc}+2\sqrt{c}+2}+\frac{1}{2\sqrt{ac}+2\sqrt{a}+2}=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{1}{\sqrt{ac}+\sqrt{a}+1}\right)=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{\sqrt{abc}}{\sqrt{bc}+\sqrt{c}+\sqrt{abc}}+\frac{\sqrt{b}}{\sqrt{abc}+\sqrt{ab}+\sqrt{b}}\right)=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{\sqrt{ab}}{\sqrt{b}+1+\sqrt{ab}}+\frac{\sqrt{b}}{1+\sqrt{ab}+\sqrt{b}}\right)=\frac{1}{2}\left(\frac{1+\sqrt{ab}+\sqrt{b}}{\sqrt{ab}+\sqrt{b}+1}\right)=\frac{1}{2}\Rightarrow M\le\frac{1}{2}\)
Vậy GTLN của M là \(\frac{1}{2}\)
\(M=\sum\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2}\sum\frac{1}{ab+b+1}\)
Maặt khác, ta có bài toán quen thuộc, cho \(abc=1\Rightarrow\sum\frac{1}{ab+b+1}=1\)
\(\Rightarrow M\le\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=1\)
1) Cho các số a,b,c thỏa mãn: a+b+c=3;\(\frac{1}{2a^2}+\frac{1}{2b^2}+\frac{1}{2c^2}+\frac{3}{2}=\frac{\sqrt{2b-1}}{a}+\frac{\sqrt{2c-1}}{b}+\frac{\sqrt{2a-1}}{c}\)
Tính M=\(\frac{\left(a+1\right)^2}{ab+1}+\frac{\left(b+1\right)^2}{bc+1}+\frac{\left(c+1\right)^2}{ca+1}\)