Tìm GTNN nếu có của \(A=\frac{16x^2+4x+1}{2x}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Tìm GTNN của A=\(\frac{16x^2+4x+1}{2x}\) với x>0
2. Tìm GTNN của B=\(\frac{1}{a}+\frac{1}{b}\) với a>0, b>0 và a+b=10
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
Tìm GTNN của biểu thức \(A=\frac{16x^2+4x+1}{2x}\) với x > 0
Ta có : \(A=\frac{16x^2+4x+1}{2x}=8x+2+\frac{1}{2x}\)
Áp dụng bđt Cauchy : \(8x+\frac{1}{2x}\ge2\sqrt{8x.\frac{1}{2x}}=4\)
\(\Rightarrow A\ge6\)
Vậy MIN A = 6 \(\Leftrightarrow\begin{cases}x>0\\8x=\frac{1}{2x}\end{cases}\) \(\Leftrightarrow x=\frac{1}{4}\)
Cách khác nhanh hơn:
Áp dụng BĐT AM-GM:
\(16x^2+4x+1\ge3\sqrt[3]{4^2.x^2.4x}=3.4x=12x\)
Suy ra \(A\ge\frac{12x}{2x}=6\).
Đẳng thức xảy ra khi \(16x^2=4x=1\Leftrightarrow x=\frac{1}{4}\)
________________
P/S: Cách này nhanh hơn avf không đòi hỏi phải tính toán nhiều :D
Cho biểu thức A=\(\left(\frac{2x+1}{1-2x}-\frac{1-2x}{1+2x}-\frac{16x^2}{4x^2-1}\right):\frac{16x^3-4x}{4x^2-4x+1}\)
a) Tìm ĐKXĐ
b) Rút gọn
c) Tìm x để A có giá trị dương
Tìm GTNN của biểu thức \(B=\frac{16x^2+4x+1}{2x}\) với x>0.
Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\) và \(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :
\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)
Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Giúp mink với !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Tìm GTLN của \(N=\frac{2x^2-16x+50}{x^2-8x+22}\)
b) Tìm GTNN của \(M=\frac{3x^2-4x}{x^2+1}\)
a, N = 2 + 6/x^2-8x+22
Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy Max N =3 <=> x=4
k mk nha
Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !
Bài 1: Cho x+2y=1. Tìm GTNN của A=x2+2y2
Bài 2: Cho xy=1. Tìm GTNN của B=|x+y|
Bài 3: Tìm GTNN của
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
Cho biểu thức
A=\(\left(\frac{2x+1}{1-2x}-\frac{1-2x}{1+2x}-\frac{16x^2-1}{x^2-1}\right)\div\frac{16x^3-4x}{4x^2-1}\)
a)Rút gọn A
b)Tìm x để A có giá trị dương
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Tìm GTNN của biểu thức :
\(x^2+2x+4\)
Đặt A = \(x^2+2x+4\)
\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)
\(\Leftrightarrow A=\left(x+1\right)^2+3\)
Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)
Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)
Hay A\(\ge3\) với mọi x
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Nên : \(A_{min}=3khix=-1\)