Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Alayna
Xem chi tiết
Nguyễn Huy Tú
24 tháng 10 2016 lúc 19:02

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

NaNh Soái Ca^s
4 tháng 11 2019 lúc 21:44

Có phải ở sách NCPT ko bn

Khách vãng lai đã xóa
soyeon_Tiểubàng giải
24 tháng 10 2016 lúc 20:09

Bài 2: Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3B=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6B-2B=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4B=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{203}{3^{100}}< 3\)

\(B< \frac{3}{4}\left(đpcm\right)\)

Lê Phương Uyên
Xem chi tiết
Đức Phạm
19 tháng 7 2017 lúc 13:54

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\text{(đpcm) }\)

địt mẹ mày
Xem chi tiết
Trần Minh Hoàng
25 tháng 3 2020 lúc 21:07

Xét số bất kì a. Ta sẽ chứng mỉnh (a + 1)2 - a2 = 2a + 1.

Thật vậy, ta có (a + 1)2 - a2 = a(a + 1) + (a + 1) - a2 = (a2 + a) + (a + 1) = 2a + 1 (đpcm).

Áp dụng ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\frac{1}{1^2}-\frac{1}{10^2}< 1\left(đpcm\right)\)

Khách vãng lai đã xóa
Alayna
Xem chi tiết
Nguyễn Kim Thành
19 tháng 9 2017 lúc 23:02

Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

= \(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

= \(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

= \(1-\frac{1}{10^2}\)< 1

Vậy

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\) <1

Big Hero 6
Xem chi tiết
Kurosaki Akatsu
10 tháng 6 2017 lúc 17:46

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

Thanh Tùng DZ
10 tháng 6 2017 lúc 17:49

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=1-\frac{1}{10^2}< 1\)

Katty
Xem chi tiết
Trần Hải An
21 tháng 8 2016 lúc 19:58

Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{2^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=1-\frac{1}{10^2}< 1\)

\(\RightarrowĐPCM\)

Trần Hải An
21 tháng 8 2016 lúc 19:55

- Đợi tí

Thanh Thảo
Xem chi tiết
Dương Nguyễn
6 tháng 8 2016 lúc 14:48

Cho \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}\)... là A, ta có:

A = \(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

A = \(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{2^2}+...\frac{1}{9^2}-\frac{1}{10^2}\)

A = 1 \(-\frac{1}{10^2}\) <1

Vậy: A < 1

Kẹo dẻo
6 tháng 8 2016 lúc 14:39

\(\frac{3}{1^2.2^2}\)+\(\frac{5}{2^2.3^2}\)+...+\(\frac{19}{9^2.10^2}\)

=1-1/4+1/4-1/9+...1/81-1/100

=1-1/100<1

Vậy tổng trên <1

Nguyễn Thế Bảo
6 tháng 8 2016 lúc 14:47

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\\ =\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{19}{81.100}\\ =1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{81}-\frac{1}{81}\right)-\frac{1}{100}\\ =1-\frac{1}{100}< 1\\ \Rightarrow A< 1\left(đpcm\right)\)

Đào Hồng Thắm
Xem chi tiết
nghia
4 tháng 7 2017 lúc 22:26

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.......+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+.......+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< \frac{100}{100}=1\)

\(\Rightarrow A< 1\)

Đỗ Linh
4 tháng 7 2017 lúc 22:35

mik nghĩ câu trả lời của nghĩa đúng nhưng mà 2 bước cuối phải thay bằng vì 1-^100 < 1 nên A < 1

Kiệt Nguyễn
18 tháng 1 2019 lúc 11:16

 Ta có : \(A=\frac{3}{1^2+2^2}+\frac{5}{2^2+3^2}+\frac{7}{3^2+4^2}+...+\frac{19}{9^2+10^2}\)

\(\Leftrightarrow A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}< 1\)

Vậy A < 1

Đặng Quốc Huy
Xem chi tiết
Vũ Minh Tuấn
6 tháng 1 2020 lúc 18:23

Đặt \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(\Rightarrow A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(\Rightarrow A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(\Rightarrow A=\frac{1}{1^2}-\frac{1}{10^2}\)

\(\Rightarrow A=1-\frac{1}{10^2}\)

\(1-\frac{1}{10^2}< 1.\)

\(\Rightarrow A< 1\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa