Cho đa thức f(x) thoả mãn điều kiện :
(x-1).f(x) = (x+4). f(x+8) với mọi x thuộc R
Cho đa thức f(x) thõa mãn điều kiện:
( x -1) . f(x) = ( x+4) . f( x +8), với mọi x thuộc R
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố.
cho đa thức f (x) thoả mãn điều kiện 2f(x)-xf (-x)=x+10 với x thuộc R, tính f (2)
Cho đa thức f(x) thỏa mãn điều kiện :
(x-1).f(x)=(x+4).f(x+8), với mọi x\(\in\)R
Chứng minh đa thức f(x) có ít nhất một nghiệm là số nguyên tố
ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)
=>(*) đúng với giá trị x=1
Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)
=> 0.f(1)=5.f(9) =>f(9)=0
=> x=9 là 1 nghiệm của f(x)
Thay f(9)=0 vào (*) ta được
(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)
=>8.0=13.f(17) => 0=13.f(17)
=> f(17)=0
=>17 là 1 nghiệm của f(x)
vậy có ít nhất 1 nghiệm là số nguyên tố
tk mk nha bn
*****Chúc bạn học giỏi*****
a) Xác định a,b,c,d để đa thức\(f\left(x\right)=ax^4+bx^3+cx^2+dx+c\) thoả mãn điều kiện \(f\left(x\right)-f\left(x-1\right)=x^3\) với mọi x và f(0) = 0
Cho đa thức f(x) thoả mãn điều kiện : x.f(x-2)=(x-4).f(x) . Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm
Giup mình với nhé
cho đa thức f(x) thỏa mãn điều kiện :
(x-1).f(x)=(x+4).f(x+8) , với x\(\in\)R
Chứng minh đa thức f(x) có ít nhất một nghiệm là số nguyên tố
cho đa thức f[x] thỏa mãn điều kiện : 3f[x] - xf[-x]= x+9 với mọi x thuộc R.Tính f[3]
Tìm các hằng số a, b, c sao cho đa thức f(x) =ax2 + bx + c thoả mãn điều kiện
f(n+1) – f(n) = n2 với mọi n = 1, 2, …
Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...
Giả sử n=1 ta có:
\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)
Giả sử n=2 ta có:
\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)
Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)
bài 1: Cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện: P(x)=Q(x)+ Q(1-x) vs mọi x thuộc R
Biết rằng các hệ số của đa thức P(x) là các số nguyên ko âm và P(0)=0. Tính P(P(3))
Bài 2: Cho đa thức f(x) là đa thứ bậc 4 có hệ số cao nhất là 1 thỏa mãn; f(1)=3;f(3)=11;f(5)=27
Tính f(-2) + 7*f(6)