Cho đa thức f(x) thõa mãn điều kiện:
( x -1) . f(x) = ( x+4) . f( x +8), với mọi x thuộc R
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố.
cho đa thức f (x) thoả mãn điều kiện 2f(x)-xf (-x)=x+10 với x thuộc R, tính f (2)
Cho đa thức f(x) thỏa mãn điều kiện :
(x-1).f(x)=(x+4).f(x+8), với mọi x\(\in\)R
Chứng minh đa thức f(x) có ít nhất một nghiệm là số nguyên tố
Cho đa thức f(x) thoả mãn điều kiện : x.f(x-2)=(x-4).f(x) . Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm
Giup mình với nhé
cho đa thức f(x) thỏa mãn điều kiện :
(x-1).f(x)=(x+4).f(x+8) , với x\(\in\)R
Chứng minh đa thức f(x) có ít nhất một nghiệm là số nguyên tố
cho đa thức f[x] thỏa mãn điều kiện : 3f[x] - xf[-x]= x+9 với mọi x thuộc R.Tính f[3]
Cho đa thức bậc hai f(x) thỏa mãn điều kiện f(-1) = f(1), Chứng minh rằng f(-x) = f(x) với mọi x
Cho đa thức f(x) thỏa mãn điều kiện
2f(x) - xf(-x) = x+10 với mọi x thuộc R.
Tính f(2)
Ai trả lời đúng nhất mình tk cho nhé!
Cho đa thức
f(x)=ax+b
Tìm điều kiện của a và b để f(x1+x2)=f(x1)+f(x2) với mọi x thuộc R