Tìm điều kiện xác định của phương trình sau: \(\sqrt{5x-1}+\sqrt{x+2}=7-x\).
tìm điều kiện xác định của bất phương trình \(\sqrt{2-x}+x< 2+\sqrt{1-2x}\)
ĐK: \(\left\{{}\begin{matrix}2-x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}\le x\le2\)
Tìm điều kiện xác định của bất phương trình:
\(\dfrac{\sqrt{\text{x - 2}}}{\text{x}+1}-\sqrt{\text{4 - x}}\ge0\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\\x+1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2< =x< =4\\x< >-1\end{matrix}\right.\Leftrightarrow x\in\left[2;4\right]\)
Tìm điều kiện xác định của các hàm số:
a) \(y=\sqrt{5x+3}+\sqrt{2x+1}\)
b) \(y=\sqrt{x-7}+\sqrt{14-x}\)
`a)` Hàm số xác định `<=>{(5x+3 >= 0),(2x+1 >= 0):}`
`<=>{(x >= -3/5),(x >= -1/2):}<=>x >= -1/2`
`b)` Hàm số xác định `<=>{(x-7 >= 0),(14-x >= 0):}`
`<=>{(x >= 7),(x <= 14):}<=>7 <= x <= 14`
Tìm điều kiện xác định của các biểu thức sau
a) \(\sqrt{\dfrac{x-1}{5-x}}\) ; b) \(\dfrac{1}{\sqrt{x^2-5x+6}}\)
a: ĐKXĐ: \(\dfrac{x-1}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-1}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow1\le x< 5\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)
Tìm điều kiện xác định của các biểu thức sau
a, \(\sqrt{2-x^2}\)
b, \(\dfrac{x}{\sqrt{5x^2-3}}\)
c, \(\sqrt{-4x^2+4x-1}\)
d, \(\dfrac{1}{\sqrt{x^2+x-2}}\)
\(a,ĐK:2-x^2\ge0\Leftrightarrow x^2\le2\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\\ b,ĐK:5x^2-3>0\Leftrightarrow x^2>\dfrac{3}{5}\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{15}}{5}\\x< -\dfrac{\sqrt{15}}{5}\end{matrix}\right.\\ c,ĐK:-\left(2x-1\right)^2\ge0\Leftrightarrow x=\dfrac{1}{2}\\ d,ĐK:x^2+x-2>0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
Tìm điều kiện xác định cuả phương trình:
\(\sqrt{4x+2}=\sqrt{x^2+4x+1}\)
Mình làm thử, bạn xem có đúng hông nha!
\(ĐKXĐ:\hept{\begin{cases}4x+2\ge0\\x^2+4x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\\left(x+2\right)^2-3\ge-3\Leftrightarrow x=-2\end{cases}\Leftrightarrow}x\ge-\frac{1}{2}}\)
Mình giải thử lun nha!
\(\sqrt{4x+2}=\sqrt{x^2+4x+1}\) (1)
Bình phương cả 2 vế của pt, ta được:
\(\left(1\right)\Leftrightarrow\left(\sqrt{4x+2}\right)^2=\left(\sqrt{x^2+4x+1}\right)^2\)
\(\Leftrightarrow4x+2=x^2+4x+1\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(\text{nhận }\right)\\x=-1\left(\text{loại}\right)\end{cases}}}\)
Vậy: \(S=\left\{1\right\}\)
(Nếu đúng thì tíck cho mìk vs nhé!)
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
Tìm điều kiện xác định của các biểu thức sau:
$\sqrt{x^{2} - 4x + 3}$
$\sqrt{x^{2} - 7x + 12}$
$\sqrt{x^{2} - 9x + 20}$
$\sqrt{-x^{2} + 2x - 1}$
a: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
b: ĐKXĐ: (x-4)(x-3)>=0
=>x>=4 hoặc x<=3
c: ĐKXĐ: (x-5)(x-4)>=0
=>x>=5 hoặc x<=4
1. tìm điều kiện xác định
\(\frac{1}{1+\sqrt{x^2-3}}\)
2. giải các phương trình sau
a. \(\sqrt{x^2-10x+25}=7-2x\)
b.\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)