Tìm STN \(\overline{abcdef}\)sao cho \(\overline{abcdef=3.\overline{abc}.\overline{def}}\)
\(\overline{abc},\overline{def}\) là 2 số tự nhiên có 3 chữ số khác nhau. Biết \(\overline{abcdef}-\overline{defabc}\) chia hết cho 2010. Tìm giá trị lớn nhất của \(\overline{abc}+\overline{def}\).
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
Đặt: \(\hept{\begin{cases}\overline{abc}=x\\\overline{def}=y\end{cases}}\)
Có: \(\overline{xy}-\overline{yx}=10\left(x-y\right)-\left(x-y\right)=9\left(x-y\right)\)
Vì \(9\left(x-y\right)⋮2010\)
nên: \(\left(x-y\right)⋮670\)
Tức: \(\left(\overline{abc}-\overline{def}\right)⋮670\)
Do đó: \(\overline{abc}-\overline{def}\in BCNN\left(670\right)=\left\{670;1340;...\right\}\)
Vì x,y là số có 3 chữ số nên có: \(\overline{abc}-\overline{def}=670\)
Tức có: \(\overline{abc}>771\&x>y\)
Có: \(100\left(a-d\right)+10\left(b-e\right)-600-70=0\)
\(\Leftrightarrow100\left(a-d-6\right)+10\left(b-e-7\right)=0\)
\(\hept{\begin{cases}a-d=6\\b-e=7\\c=f\end{cases}\left(a>6;b\ge7\right)}\)
Giả sử: a=9 thì d=3 thì tổng a và d lớn nhất nên chọn
Từ đó: b=8 và e=1 thì tổng b và e lớn nhất
Suy ra: c=f=7
Vì thế: \(\hept{\begin{cases}abc=987\\def=317\end{cases}\Rightarrow}abc+def=1304\)
Max là 1304
Làm bừa xem có đúng k nhỉ
1. Tìm STN có 3 cs \(\overline{abc}\) sao cho \(\overline{abc}=\overline{ab}^2-c^2\)
2. Tìm STN \(\overline{ab}\) sao cho \(\overline{ab}^2=\overline{acdb}\)
3. Tìm số tự nhiên có 5 chữ số biết rằng nó bằng lập phương của số tạo bởi 2 cs đầu ( ko đổi thứ tự )
4. Tìm STN \(\overline{abcdef}⋮\overline{abc}\cdot\overline{def}\)
5. cho 5 STN a,b,c,d mỗi số có 4 cs và gồm cả 4 cs 1,2,3,4. Cmr: không thể xảy ra \(a^3+b^3+c^3=d^3+e^3\)
Có vẻ khá lâu rùi ko có ai giải bài này.
1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)
\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số
\(\overline{ab}^2-10.\overline{ab}=c^2+c\)
Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)
Vậy \(10\le\overline{ab}\le16\)
Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)
2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.
Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:
\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)
(Thay lần lượt các giá trị vô là xong)
Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.
Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)
3. Gọi STN có 5 chữ số đó là \(\overline{abcde}\), ta có:
\(10000\le\overline{abcde}\le99999\)
\(\Rightarrow\)\(22^3\le\overline{abcde}=\overline{ab^3}\le46^3\)
Vì đã giới hạn được khoảng ngắn lên cứ thế mà thử từng số từ 22 đến 46 là xong :>
Kết quả \(\overline{ab}=32\)
Cho \(\overline{abc}\)-\(\overline{def}\)chia hết cho 13.CMR \(\overline{abcdef}\)chia hết cho 13
1. Tìm số có 6 chữ số \(\overline{abcdef}\) sao cho \(\overline{abcdef}=\left(\overline{abc}+\overline{def}\right)^2\)
2. Tìm các chữ số a,b,c,d sao cho \(\forall n\in N\) ta có :
\(\overline{aaa...abbb..bccc...c}+1=\left(\overline{ddd...d}+1\right)^2\) ( mỗi chữ số a,b,c,d xuất hiện n lần )
Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,
Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm
giúp e vs ạ! Cần gấp! Thanks!
Bài 1:
Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)
Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)
Vì: \(A\le999\) nên:
\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)
\(\Rightarrow A+B\le999\)
Xét các trường hợp \(A=999\) và \(A< 999\) từ đó :
\(\Rightarrow\overline{abcdef}=494209\)
Vậy số cần tìm là: \(494209\)
a) Cho số A=\(\overline{111.....11}\)( 2012 chữ số 1 ). Hỏi A là hợp số hay số nguyên tố?
b) Chứng tỏ rằng nếu \(\overline{abc}+\overline{def}\)chia hết cho 37 thì \(\overline{abcdef}\)chia hết cho 37.
Chứng minh rằng\(\overline{abcdef}\) chia hết cho 23 va 29 biết \(\overline{abc}\) = 2def
Ta có: abcdeg = 1000abc + deg = 2000deg + deg = 2001deg
Vì 2001 chia hết cho 23 và 29 => 2001deg chia hết cho 23 và 29 => abcdeg chia hết cho 23 và 29
Cho phép tính cộng: . Như vậy
HEPL MEEEEEEEEEEEEEEEE!
Vì c<10 , d<10 nên c+d < 20
Do đó giá trị lớn nhất của c+d là 19 .Vậy c+d có chữ số tận cùng lớn nhất bằng 9. Theo đề bài c + d = 0 . Vậy c = d = 0
Ta có : \(\overline{ab40}+\overline{1760}=\overline{ef900}\) . Đặt phép tính dọc, ta tính ra được b = 1, a = 9
Vậy \(\overline{abcdef}=\overline{910010}\)
Cho phép tính cộng:. Như vậy
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)