Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đại Nghĩa
Xem chi tiết
Lê Nhật Khôi
1 tháng 7 2019 lúc 15:42

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

Trần Đại Nghĩa
1 tháng 7 2019 lúc 15:46

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

Lê Nhật Khôi
1 tháng 7 2019 lúc 16:29

Đặt: \(\hept{\begin{cases}\overline{abc}=x\\\overline{def}=y\end{cases}}\)

Có: \(\overline{xy}-\overline{yx}=10\left(x-y\right)-\left(x-y\right)=9\left(x-y\right)\)

Vì \(9\left(x-y\right)⋮2010\)

nên: \(\left(x-y\right)⋮670\)

Tức: \(\left(\overline{abc}-\overline{def}\right)⋮670\)

Do đó: \(\overline{abc}-\overline{def}\in BCNN\left(670\right)=\left\{670;1340;...\right\}\)

Vì x,y là số có 3 chữ số nên có: \(\overline{abc}-\overline{def}=670\)

Tức có: \(\overline{abc}>771\&x>y\)

Có: \(100\left(a-d\right)+10\left(b-e\right)-600-70=0\)

\(\Leftrightarrow100\left(a-d-6\right)+10\left(b-e-7\right)=0\)

\(\hept{\begin{cases}a-d=6\\b-e=7\\c=f\end{cases}\left(a>6;b\ge7\right)}\)

Giả sử: a=9 thì d=3 thì tổng a và d lớn nhất nên chọn

Từ đó: b=8 và e=1 thì tổng b và e lớn nhất

Suy ra: c=f=7

Vì thế: \(\hept{\begin{cases}abc=987\\def=317\end{cases}\Rightarrow}abc+def=1304\)

Max là 1304

Làm bừa xem có đúng k nhỉ

bach nhac lam
Xem chi tiết
Vũ Huy Hoàng
2 tháng 4 2020 lúc 8:32

Có vẻ khá lâu rùi ko có ai giải bài này.

1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)

\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số

\(\overline{ab}^2-10.\overline{ab}=c^2+c\)

Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)

Vậy \(10\le\overline{ab}\le16\)

Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)

Khách vãng lai đã xóa
Vũ Huy Hoàng
2 tháng 4 2020 lúc 8:39

2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.

Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:

\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)

(Thay lần lượt các giá trị vô là xong)

Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.

Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)

Khách vãng lai đã xóa
Vũ Huy Hoàng
2 tháng 4 2020 lúc 8:45

3. Gọi STN có 5 chữ số đó là \(\overline{abcde}\), ta có:

\(10000\le\overline{abcde}\le99999\)

\(\Rightarrow\)\(22^3\le\overline{abcde}=\overline{ab^3}\le46^3\)

Vì đã giới hạn được khoảng ngắn lên cứ thế mà thử từng số từ 22 đến 46 là xong :>

Kết quả \(\overline{ab}=32\)

Khách vãng lai đã xóa
Đỗ Việt Hoàng
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
1 tháng 2 2020 lúc 23:16

Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,

Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm

giúp e vs ạ! Cần gấp! Thanks!

Khách vãng lai đã xóa
Diệu Huyền
2 tháng 2 2020 lúc 9:48

Bài 1:

Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)

Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)

Vì: \(A\le999\) nên:

\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)

\(\Rightarrow A+B\le999\)

Xét các trường hợp \(A=999\)\(A< 999\) từ đó :

\(\Rightarrow\overline{abcdef}=494209\)

Vậy số cần tìm là: \(494209\)

Khách vãng lai đã xóa
Phạm Thọ Giang Quang
Xem chi tiết
Uyên Phương
Xem chi tiết
qwerty
22 tháng 3 2017 lúc 20:38

Ta có: abcdeg = 1000abc + deg = 2000deg + deg = 2001deg

Vì 2001 chia hết cho 23 và 29 => 2001deg chia hết cho 23 và 29 => abcdeg chia hết cho 23 và 29

yoring
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 9 2016 lúc 17:27

Vì c<10 , d<10 nên c+d < 20

Do đó giá trị lớn nhất của c+d là 19 .Vậy c+d có chữ số tận cùng lớn nhất bằng 9. Theo đề bài c + d = 0 . Vậy c = d = 0

Ta có : \(\overline{ab40}+\overline{1760}=\overline{ef900}\) . Đặt phép tính dọc, ta tính ra được b = 1, a = 9

Vậy \(\overline{abcdef}=\overline{910010}\)

 

VŨ THỊ HUYỀN TRANG
Xem chi tiết
Vũ Phương Nhi
Xem chi tiết
HT.Phong (9A5)
30 tháng 9 2023 lúc 14:11

loading...