Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bée Changg
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:20

Em kiểm tra lại câu a, chỗ \(x^2-x+z\) chữ \(z\) đó có vấn đề, nó phải là 1 con số ví dụ số 2 (chắc em nhìn nhầm số 2 thành chữ z)

Bée Changg
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:37

a.

\(\left(x^2-x+1\right)\left(x^2-x+2\right)=12\)

Đặt \(x^2-x+1=y\) ta được:

\(y\left(y+1\right)=12\)

\(\Leftrightarrow y^2+y-12=0\)

\(\Leftrightarrow y^2+4y-3y-12=0\)

\(\Leftrightarrow\left(y-3\right)\left(y+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=3\\y=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=3\\x^2-x+1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:39

b.

\(3y^3-7y^2-7y+3=0\)

\(\Leftrightarrow3\left(y^3+1\right)-7y\left(y+1\right)=0\)

\(\Leftrightarrow3\left(y+1\right)\left(y^2-y+1\right)-7y\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(3y^2-3y+3-7y\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(3y^2-10y+3\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(3y-1\right)\left(y-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=\dfrac{1}{3}\\y=3\end{matrix}\right.\)

Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:41

c.

\(x^2+2y^2=4x+4y-6=0\)

\(\Leftrightarrow x^2-4x+4+2y^2-4y+2=0\)

\(\Leftrightarrow\left(x-2\right)^2+2\left(y-1\right)^2=0\)

Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) với mọi x;y

\(\Rightarrow\left(x-2\right)^2+2\left(y-1\right)^2\ge0\) ; \(\forall x;y\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Dương Kim Hạnh
Xem chi tiết
Tớ Đông Đặc ATSM
26 tháng 7 2018 lúc 10:52

a,  x2+2xy+y2+2x+2y-15

<=> (x+y )2+2(x+y)+1-16

Đặt x+y =a

<=> a2+2a+1-42

<=> (a+1)2-42

<=> (a+5)(a-3) =>( x+y+5)(x+y-3)

b, x2-4xy+4y2-2x-4y-35

<=> (x-2y)2-2(x-2y)+1-36

Đặt (x-2y)  =b 

=> b2-2b+1-62

<=> (b-1)2-62

<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)

c, 

Bích Trịnh
26 tháng 7 2018 lúc 11:19

a,A= x^2+2xy+y^2+2x+2y-15

= (x+y)^2+(x+y)-15

Đặt x+y=a, ta có:

A=a^2+2a-15

  =a^2+2a+1-16

  =(a+1)^2-4^2

  =(a+1+4)(a+1-4)

  =(a+5)(a-3)

Thay a=x+y, ta có: A=(x+y+5)(x+y-3).

Bích Trịnh
26 tháng 7 2018 lúc 11:31

b,B= x^2 - 4xy+4y^2-2x-4y-35

   Hình như là sai đề đó bạn. Phải là x^2 - 4xy+4y^2-2x+4y-35 hoặc x^2 - 4xy+4y^2+2x-4y-35 hoặc x^2 + 4xy+4y^2-2x-4y-35 mới đúng đó bạn. Bạn xem lại đi nha.

c,C=6x^4 - 5x^3+8x^2-5x+6

C= x^2(6x^2-5x+8-5/x+6/x^2)

  =x^2(6(x^2+2+1/x^2)-5(x+1/x)-4)

  =x^2(6(x+1/x)^2-5(x+1/x)-4)

Đặt x+1/x=a, ta có:

C=x^2(6a^2-5a-4)

  =x^2(6a^2+3a-8a-4)

  =x^2(2a+1)(3a-4)

Thay a=x+1/x vào là được bạn nhé.

Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2023 lúc 23:59

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

=>x+1=1 và y-2=1/2

=>x=0 và y=5/2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)

=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6

=>x-2y=9 và 2x-y=12

=>x=5; y=-2

c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

Bée Changg
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:33

a.

\(x^2+4y^2+4xy=0\)

\(\Leftrightarrow\left(x+2y\right)^2=0\)

\(\Leftrightarrow x+2y=0\)

\(\Leftrightarrow x=-2y\)

Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)

b.

\(2y^4-9y^3+2y^2-9y=0\)

\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)

\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)

c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được

Zurich Nonstop Gamer
Xem chi tiết
Ko Cần Bt
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2020 lúc 14:41

a/

Đặt \(\sqrt{x^2-4x+5}=t>0\Rightarrow x^2-4x=t^2-5\)

Pt trở thành: \(t^2-5+2=2t\Leftrightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+5}=3\Leftrightarrow x^2-4x-4=0\) (bấm máy)

b/ ĐKXĐ: \(-4\le x\le6\)

\(-x^2+2x+24+\sqrt{-x^2+2x+24}-12=0\)

Đặt \(\sqrt{-x^2+2x+24}=t\ge0\)

\(\Rightarrow t^2+t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-x^2+2x+24}=4\Rightarrow x^2-2x-8=0\) (bấm máy)

Khách vãng lai đã xóa
Mymy V
Xem chi tiết
Thầy Cao Đô
27 tháng 12 2022 lúc 14:04

Đặt $x^2 = a > 0$ và $y^2 = b > 0$ thì hệ đã cho trở thành:

$\left\{\begin{aligned}&4a - 3b = 5\\&a + 2b = 4\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&4a - 3b = 5\\&a = 4 - 2b\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&16 - 8b - 3b = 5\\&a = 4 - 2b\\ \end{aligned}\right.$

$ \Leftrightarrow \left\{\begin{aligned}&- 11b = -11\\&a = 4 - 2b\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&b = 1 \, (tm)\\&a = 2 \, (tm)\\ \end{aligned}\right.$

Suy ra $x^2 = 2$ và $y^2 = 1$ từ đó em suy ra các nghiệm $(x;y)$ nhé

Trần Thị Su
Xem chi tiết
Nguyễn Ngọc Huy Toàn
3 tháng 4 2022 lúc 19:17

Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)